A Correlation of

Pearson

Connected Mathematics 2
©2012

to the

Common Core
Georgia Performance Standards
Grade 7
Format for Correlation to the Common Core Georgia Performance Standards (CCGPS)

Subject Area: K-12 Mathematics
State-Funded Course: 27.02210, 27.02220, 27.02260, 27.02270
Textbook Title: Pearson Connected Mathematics 2 © 2012
Publisher: Pearson Education Inc., publishing as Prentice Hall

<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Mathematics</td>
<td>Grade 7**</td>
<td></td>
</tr>
<tr>
<td>Ratios and Proportional Relationships 7.RP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze proportional relationships and use them to solve real-world and mathematical problems.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| MCC7.RP.1 | **Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.** | **SE:** Comparing and Scaling, Investigation 3: 35-46
Common Core Investigations, Investigation 1: 1-6
TE: Comparing and Scaling, Investigation 3: 57-68
Common Core Investigations, Investigation 1: 7-10 |

SE = Student Edition; **TE** = Teacher’s Edition
Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers
Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.RP.2 | Recognize and represent proportional relationships between quantities. | **SE:** *Stretching and Shrinking*, Investigation 2: 22-36; Investigation 4: 60-76; Investigation 5: 78-92
 Comparing and Scaling, Investigation 3: 41-42; Investigation 4: 57
 Common Core Investigations, Investigation 1: 1-6
 TE: *Stretching and Shrinking*, Investigation 2: 33-48; Investigation 4: 75-86; Investigation 5: 91-102
 Comparing and Scaling, Investigation 3: 68; Investigation 4: 88
 Common Core Investigations, Investigation 1: 7-10 |
| MCC7.RP.2a | Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. | **SE:** *Comparing and Scaling*, Investigation 3: 34-46
 Common Core Investigations, Investigation 1: 1-6
 TE: *Comparing and Scaling*, Investigation 3: 52-68
 Common Core Investigations, Investigation 1: 7-10 |
| MCC7.RP.2b | Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. | **SE:** *Comparing and Scaling*, Investigation 3: 35-46; Investigation 4: 48-54
 Common Core Investigations, Investigation 1: 1-6
 TE: *Comparing and Scaling*, Investigation 3: 57-68; Investigation 4: 73-78
 Common Core Investigations, Investigation 1: 7-10 |
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught (If print component, cite page number; if non-print, cite appropriate location.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC7.RP.2c</td>
<td>Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.</td>
<td>SE: Variables and Patterns, Investigation 4: 74-75 Stretching and Shrinking, Investigation 4: 60-76; Investigation 5: 78-92 Comparing and Scaling, Investigation 4: 49-61 TE: Variables and Patterns, Investigation 4: 98 Stretching and Shrinking, Investigation 4: 75-86; Investigation 5: 91-102 Comparing and Scaling, Investigation 4: 74-88</td>
</tr>
<tr>
<td>MCC7.RP.2d</td>
<td>Explain what a point (x,y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0,0) and (1,r) where r is the unit rate.</td>
<td>SE: Variables and Patterns, Investigation 1: 14 Comparing and Scaling, Investigation 3: 41-42 Moving Straight Ahead, Investigation 1: 5-22; Investigation 2: 29-43 Common Core Investigations, Investigation 1: 1, 5 TE: Variables and Patterns, Investigation 1: 35, 36 Comparing and Scaling, Investigation 3: 68 Moving Straight Ahead, Investigation 1: 15-34; Investigation 2: 55-60 Common Core Investigations, Investigation 1: 1, 10</td>
</tr>
</tbody>
</table>

SE = Student Edition; TE = Teacher’s Edition
Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers

Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Number System 7.NS</td>
<td>Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.</td>
<td></td>
</tr>
</tbody>
</table>
| MCC7.NS.1 | Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. | **SE**: Accentuate the Negative, Investigation 2: 22-40; Investigation 4: 66-68
TE: Accentuate the Negative, Investigation 2: 36-56; Investigation 4: 95-98 |
| MCC7.NS.1a | Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. | **SE**: Accentuate the Negative, Investigation 1: 8-20; Investigation 2: 28-29
TE: Accentuate the Negative, Investigation 1: 13-32; Investigation 2: 45-48 |
| MCC7.NS.1b | Understand p + q as the number located a distance | **SE**: Accentuate the Negative, Investigation 1: 8-20; Investigation 2: 28-30
TE: Accentuate the Negative, Investigation 1: 13-32; Investigation 2: 45-52 |
| MCC7.NS.1c | Understand subtraction of rational numbers as adding the additive inverse, p-q = p + (-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. | **SE**: Accentuate the Negative, Investigation 1: 12-13, 16-20; Investigation 2: 24-29, 32-40
TE: Accentuate the Negative, Investigation 1: 25-28, 32; Investigation 2: 41-48, 56 |
| MCC7.NS.1d | Apply properties of operations as strategies to add and subtract rational numbers. | **SE**: Accentuate the Negative, Investigation 2: 22-40; Investigation 4: 60-74
TE: Accentuate the Negative, Investigation 2: 36-56; Investigation 4: 86-98 |

SE = Student Edition; **TE** = Teacher’s Edition
Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers
Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.NS.2 | Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. | **SE**: Accentuate the Negative, Investigation 3: 44-58; Investigation 4: 60-65, 69-74
TE: Accentuate the Negative, Investigation 3: 63-80; Investigation 4: 87-94, 98 |
| MCC7.NS.2a | Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1)=1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. | **SE**: Accentuate the Negative, Investigation 3: 44-58; Investigation 4: 60-65, 69-74
TE: Accentuate the Negative, Investigation 3: 63-80; Investigation 4: 87-94, 98 |
| MCC7.NS.2b | Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts. | **SE**: Accentuate the Negative, Investigation 3: 47-48, 50-58
TE: Accentuate the Negative, Investigation 3: 73-76, 80 |
| MCC7.NS.2c | Apply properties of operations as strategies to multiply and divide rational numbers. | **SE**: Accentuate the Negative, Investigation 3: 44-58; Investigation 4: 60-75
TE: Accentuate the Negative, Investigation 3: 63-80; Investigation 4: 87-98 |
| MCC7.NS.2d | Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats. | **SE**: Comparing and Scaling, Investigation 3: 37-46: Investigation 4: 52-61
TE: Comparing and Scaling, Investigation 3: 65-68; Investigation 4: 79-88 |

SE = Student Edition; **TE** = Teacher’s Edition

Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers

Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>

Expressions and Equations 7.EE

<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC7.EE.2</td>
<td>Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.”</td>
<td>SE: Common Core Investigations, Investigation 2: 7-10 TE: Common Core Investigations, Investigation 2: 11-18</td>
</tr>
<tr>
<td>Standard (Cite Number)</td>
<td>Standard (Cite specific standard)</td>
<td>Where Taught</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Solve real-life and mathematical problems using numerical and algebraic expressions and equations.</td>
<td>MCC7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.</td>
<td>SE: Variables and Patterns, Investigation 2: 31-47; Investigation 3: 49-62; Investigation 4: 64-79; Accentuate the Negative, Investigation 1: 8-20; Investigation 2: 22-40; Investigation 3: 44-58; Investigation 4: 60-74, 76-77; Moving Straight Ahead, Investigation 1: 5-22; Investigation 2: 24-44; Investigation 3: 47-68; Investigation 4: 70-88</td>
</tr>
<tr>
<td>MCC7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.</td>
<td></td>
<td>SE: Variables and Patterns, Investigation 1: 6-28; Investigation 2: 31-47; Investigation 3: 49-62; Moving Straight Ahead, Investigation 1: 5-22; Investigation 2: 24-44; Investigation 3: 47-68; Investigation 4: 70-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE: Variables and Patterns, Investigation 1: 16-36; Investigation 2: 45-58; Investigation 3: 69-80; Moving Straight Ahead, Investigation 1: 15-34; Investigation 2: 42-60; Investigation 3: 67-88; Investigation 4: 96-114</td>
</tr>
</tbody>
</table>

SE = Student Edition; **TE** = Teacher’s Edition

Grade 7 Connected Mathematics 2 Units

Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers

Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect? Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups

Page 7 of 14
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught (If print component, cite page number; if non-print, cite appropriate location.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC7.EE.4a</td>
<td>Solve word problems leading to equations of the form (px + q = r) and (p(\ x + q) = r), where (p, q,) and (r) are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?</td>
<td>SE: Variables and Patterns, Investigation 3: 49-62 Moving Straight Ahead, Investigation 1: 5-22; Investigation 2: 24-44; Investigation 3: 47-68; Investigation 4: 70-88</td>
</tr>
<tr>
<td>MCC7.EE.4b</td>
<td>Solve word problems leading to inequalities of the form (px + q > r) or (px + q < r), where (p, q,) and (r) are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, as a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.</td>
<td>SE: Moving Straight Ahead, Investigation 2: 44 Common Core Investigations, Investigation 3: 11-17 TE: Moving Straight Ahead, Investigation 2: 60 Common Core Investigations, Investigation 3: 19-26</td>
</tr>
</tbody>
</table>

SE = Student Edition; TE = Teacher’s Edition

Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers
Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry 7.G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCC7.G.2</td>
<td>Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.</td>
<td>SE: Filling and Wrapping, Investigation 1: 5-6, 10-17; Investigation 3: 35-46 Common Core Investigations, Investigation 4: 21, 22, 25 TE: Filling and Wrapping, Investigation 1: 14-22, 30; Investigation 3: 65-72 Common Core Investigations, Investigation 4: 28-29, 33, 36</td>
</tr>
<tr>
<td></td>
<td>Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.</td>
<td>SE: Common Core Investigations, Investigation 4: 23 TE: Common Core Investigations, Investigation 4: 28, 35, 36</td>
</tr>
<tr>
<td>MCC7.G.3</td>
<td>Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.</td>
<td>SE: Common Core Investigations, Investigation 4: 19-20, 24 TE: Common Core Investigations, Investigation 4: 28-29, 35, 36</td>
</tr>
<tr>
<td>MCC7.G.4</td>
<td>Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.</td>
<td>SE: Common Core Investigations, Investigation 4: 19-20, 24 TE: Common Core Investigations, Investigation 4: 28-29, 35, 36</td>
</tr>
</tbody>
</table>

SE = Student Edition; **TE** = Teacher’s Edition

Grade 7 Connected Mathematics 2 Units

Common Core Investigations: Additional Investigations

Variables and Patterns: Introducing Algebra

Stretching and Shrinking: Understanding Similarity

Comparing and Scaling: Ratio, Proportion, and Percent

Accentuate the Negative: Integers and Rational Numbers

Moving Straight Ahead: Linear Relationships

Filling and Wrapping: Three-Dimensional Measurement

What Do You Expect?: Probability and Expected Value

Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught (If print component, cite page number; if non-print, cite appropriate location.)</th>
</tr>
</thead>
</table>
| MCC7.G.5 | Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. | **SE:** Stretching and Shrinking, Investigation 3: 50-51
Common Core Investigations, Investigation 4: 25-26
TE: Stretching and Shrinking, Investigation 3: 68
Common Core Investigations, Investigation 4: 28-29, 34, 36 |
| MCC7.G.6 | Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. | **SE:** Stretching and Shrinking, Investigation 2: 22-36; Investigation 3: 39-56
Filling and Wrapping, Investigation 1: 5-17; Investigation 2: 20-30; Investigation 3: 32-46; Investigation 4: 49-60; Investigation 5: 63-74
TE: Stretching and Shrinking, Investigation 2: 33-48; Investigation 3: 55-68
| **Statistics and Probability 7.SP** | **Use random sampling to draw inferences about a population.** | **SE:** Common Core Investigations, Investigation 5: 27-34
TE: Common Core Investigations, Investigation 5: 37-39, 43-46 |
| MCC7.SP.1 | Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. | **SE:** Common Core Investigations, Investigation 5: 27-34
TE: Common Core Investigations, Investigation 5: 37-39, 43-46 |

SE = Student Edition; **TE** = Teacher’s Edition
Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers
Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect? Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.SP.2 | Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. *For example*, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. | **SE**: Common Core Investigations, Investigation 5: 27-34
TE: Common Core Investigations, Investigation 5: 37-39, 43-46 |

Draw informal comparative inferences about two populations.

| MCC7.SP.3 | Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. *For example*, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable. | **SE**: Data Distributions, Investigation 2: 29-53; Investigation 3: 55-72; Investigation 4: 74-84
Common Core Investigations, Investigation 5: 29-33
TE: Data Distributions, Investigation 2: 46-66; Investigation 3: 74-92; Investigation 4: 99-114
Common Core Investigations, Investigation 5: 39, 46 |
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.SP.4 | Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book. | SE: Data Distributions, Investigation 3: 55-72; Investigation 4: 74-84
TE: Data Distributions, Investigation 3: 74-92; Investigation 4: 99-114 |
| MCC7.SP.5 | Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. | SE: What Do You Expect?, Investigation 1: 6-9, 14-17; Investigation 4: 51-53
| MCC7.SP.6 | Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. | SE: What Do You Expect?, Investigation 1: 6-18; Investigation 2: 22-36; Investigation 3: 38-48; Investigation 4: 51-60

SE = Student Edition; **TE** = Teacher’s Edition
Grade 7 Connected Mathematics 2 Units
Common Core Investigations: Additional Investigations
Variables and Patterns: Introducing Algebra
Stretching and Shrinking: Understanding Similarity
Comparing and Scaling: Ratio, Proportion, and Percent
Accentuate the Negative: Integers and Rational Numbers
Moving Straight Ahead: Linear Relationships
Filling and Wrapping: Three-Dimensional Measurement
What Do You Expect?: Probability and Expected Value
Data Distributions: Describing Variability and Comparing Groups
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.SP.7 | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. | **SE:** What Do You Expect?, Investigation 1: 6-18; Investigation 2: 22-36; Investigation 3: 38-48; Investigation 4: 51-60
TE: What Do You Expect?, Investigation 1: 18-32; Investigation 2: 38-54; Investigation 3: 60-72; Investigation 4: 79-90 |
| MCC7.SP.7a | Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. | **SE:** What Do You Expect?, Investigation 1: 6-18; Investigation 2: 22-36; Investigation 3: 38-48; Investigation 4: 51-60
TE: What Do You Expect?, Investigation 1: 18-32; Investigation 2: 38-54; Investigation 3: 60-72; Investigation 4: 79-90 |
| MCC7.SP.7b | Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? | **SE:** What Do You Expect?, Investigation 1: 6-18; Investigation 2: 22-36; Investigation 3: 38-48; Investigation 4: 51-60
TE: What Do You Expect?, Investigation 1: 18-32; Investigation 2: 38-54; Investigation 3: 60-72; Investigation 4: 79-90 |
TE: What Do You Expect?, Investigation 1: 18-32; Investigation 2: 38-54; Investigation 3: 60-72; Investigation 4: 79-90 |
| MCC7.SP.8a | Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. | **SE:** What Do You Expect?, Investigation 1: 6-18; Investigation 2: 21-36; Investigation 3: 38-48; Investigation 4: 51-60
TE: What Do You Expect?, Investigation 1: 18-32; Investigation 2: 38-54; Investigation 3: 60-72; Investigation 4: 79-90 |
<table>
<thead>
<tr>
<th>Standard (Cite Number)</th>
<th>Standard (Cite specific standard)</th>
<th>Where Taught</th>
</tr>
</thead>
</table>
| MCC7.SP.8b | Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. | SE: What Do You Expect?, Investigation 1: 7-8, 10-18; Investigation 2: 27-31; Investigation 4: 55-58; Unit Review: 63-65
TE: What Do You Expect?, Investigation 1: 23-26, 32; Investigation 2: 54; Investigation 4: 90; Unit Review: 104 |
| MCC7.SP.8c | Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood? | SE: What Do You Expect?, Investigation 2: 20-21, 24-25; Investigation 3: 38-48