Rituals and Routines

Introduction

Embedded within the routines of Math Navigator lessons are rituals. Rituals are formal procedures for conducting specific activities that occur frequently in the lessons. While some of these rituals may seem long and involved initially, once you and your students have internalized the procedures, you no longer need to explain “what to do.” Students can get right to work and you can spend your time teaching instead of managing activities.

The daily lessons are an example of the use of rituals. Math Navigator lessons vary from day to day and module to module but when you look at these lessons with a focus on rituals, you will see that they are more alike than different. Tasks are introduced using the presenting the task ritual. After this introduction, students begin with a few minutes of solo work and then move into partner work for most tasks. Solo work runs smoothly because students are taught how to use “Ask Myself” questions and the What to Do If You Get Stuck list as part of the ritual. The ritual for partner work is modeled, reviewed, and continually reinforced. After solo work and partner work, you bring closure to the task with the probing for understanding whole group discussion. These four rituals are repeated as a cycle for each task in the lesson.

The use of predictable rituals and routines benefits all students, but especially those who struggle with the content for any number of reasons. Once they know the procedures, students no longer have to exert energy understanding the class norms. Instead, they can turn their full attention to learning.
Chart of Rituals

<table>
<thead>
<tr>
<th>Ritual</th>
<th>Goal</th>
<th>Type of Instruction/Student Work</th>
<th>Instructor and Student Responsibilities</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Show Me Cards</td>
<td>• Review procedures and basic facts</td>
<td>• Instructor-led</td>
<td>• Students answer Show Me Card problems</td>
<td>6 minutes</td>
</tr>
<tr>
<td></td>
<td>• Emphasize patterns and strategies for successful computation</td>
<td>• Independent student work</td>
<td>• Instructor assesses students as they work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide critical practice</td>
<td>• Brief and tightly focused</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assess learning</td>
<td>• Quick response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify difficulties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using the Study Cards</td>
<td>• Review and consolidate</td>
<td>• Independent student work</td>
<td>• Students add Study Cards, as needed, to their sets</td>
<td>5 minutes</td>
</tr>
<tr>
<td></td>
<td>• Provide study aids for use throughout the day</td>
<td>• Can be used as focus for conferences</td>
<td>• Students use Study Cards at school and at home to review</td>
<td>twice a week</td>
</tr>
<tr>
<td></td>
<td>• Can be used to assess learning</td>
<td></td>
<td>• Students keep track of what they know by moving cards to a different ring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Instructor provides guidance in managing/creating Study Cards</td>
<td></td>
</tr>
<tr>
<td>Using the Student Book</td>
<td>• Record student thinking</td>
<td>• Independent student work</td>
<td>• Students record their thinking and responses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Teach students to organize their work and to respond with</td>
<td></td>
<td>• Students refer to previous work and notes to help solve problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than simple answers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting the Task</td>
<td>• Introduce the task/problem</td>
<td>• Instructor-led</td>
<td>• Students read, listen, and understand the task/problem</td>
<td>2–3 minutes,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Focus is on comprehending the task, not on deciding how to proceed</td>
<td>• Instructor watches for misunderstandings, and clarifies or models as needed to ensure comprehension of task</td>
<td>as needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritual</td>
<td>Goal</td>
<td>Type of Instruction/Student Work</td>
<td>Instructor and Student Responsibilities</td>
<td>Time</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Solo Work</td>
<td>• Provide quiet time for individual work</td>
<td>• Independent student work</td>
<td>• Students begin working on task/problem
• Students use What to Do If You Get Stuck list
• Instructor observes students</td>
<td>1–3 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Students may use manipulatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner Work</td>
<td>• Provide time for partners to share and respond</td>
<td>• Students work in pairs
• Conferences and focused teaching may take place</td>
<td>• Students work in pairs to refine and edit their answers
• Instructor offers additional assistance where needed; conferences as needed; evaluates student progress</td>
<td>2–6 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probing for</td>
<td>• Discuss the task/problem and student responses
• Address misconceptions</td>
<td>• Instructor-facilitated
• Focus is on generalizing the solutions to similar tasks, not on determining correct answers to specific tasks</td>
<td>• Students reflect on their own reasoning and that of their peers; ask questions
• Instructor uncovers misconceptions; clarifies thinking; investigates approaches that did and did not work; solidifies the concepts</td>
<td>5–10 minutes</td>
</tr>
<tr>
<td>Understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conferencing</td>
<td>• Guide students toward improved mathematical thinking and independence</td>
<td>• Instructor- or student-led
• Takes place during partner work</td>
<td>• Students address problems; review Study Cards; set goals
• Instructor does formal or informal assessment; sets goals; clears confusions; celebrates successes</td>
<td>3–6 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using a Workspace</td>
<td>• Organize materials
• Use materials effectively
• Use materials at appropriate times</td>
<td>• Instructor-led
• Independent student work</td>
<td>• Students listen to instructions before they begin
• Students use manipulatives to solve problems
• Instructor models use of manipulatives
• Instructor observes student use of manipulatives to assess understanding</td>
<td></td>
</tr>
</tbody>
</table>
Using the Show Me Cards

Show Me Cards are used during the show me routine of a Math Navigator lesson. Each student needs a quick response board and appropriate writing and erasing materials.

- Show students the Show Me Cards designated for that day and read the questions on the back of the cards.
- Students write responses on quick response boards without conferring or talking.
- Students show quick response boards so you can visually check their answers.

If the students:

- Have all correct responses—
 » Ask one student to explain how she got her answer.
 » Put the card in the pile for correct responses, and go on to the next card.
- Do not respond—
 » Explain the method written on the back of the card to students. This method may be an arithmetic procedure or it may be a pattern of thought that can lead to the answer for this type of problem.
 » Put the card in the pile for additional teaching, and go on to the next card.
– Respond but no one has a right answer—
 » Ask one student to explain how she got her (incorrect) answer.
 » Tell students:
 Q The correct answer is <answer>. Can anyone help us understand why this answer is different?

 » Then, if necessary, follow with:
 Q One way to solve a problem like this is to …

 » and explain the method written on the back of the card.
 » Put the card in the pile for additional teaching, and go on to the next card.
– Have some correct and incorrect responses, you will want to vary your approach—
 » Approach 1
 • Ask one student who had an incorrect response:
 Q Explain how you got your answer.
 • Then tell students:
 Q The correct answer is <answer>. Can anyone help us understand why this answer is different?

 • Then, if necessary, follow with:
 Q One way to solve a problem like this is to …

 • And explain the method written on the back of the card.

 » Approach 2
 • Have a student with a correct response explain her reasoning.
 • Make sure everyone understands her reasoning before you go on.
 • Put the card in the pile for additional teaching, and go on to the next card.

Stop after about 5 minutes even if students have not completed all of the Show Me Cards for that day.
 • Put any Show Me Cards students have not completed in the “need additional teaching” pile. Use these cards for additional practice as time permits, or as the focus of student conferences.
 • Ask students to put their quick response materials away. Then ask them to get their Student Books and any other supplies that are needed for the lesson.
 • Ask students to work individually on the show me problem that is at the beginning of the lesson in their Student Books. Allow a minute for this.
 • While students do the show me problem in their Student Books, write notes about issues and progress that you noticed during show me, both for individuals and for the group.

Using the Study Cards

The small cards with rings that come with the student materials are Study Cards. They are intended as a study aid for students, both during the Math Navigator lessons and when students have free time at school or at home. Students should take their Study Cards with them when they leave the Math Navigator lesson.
There are three types of Study Cards. A given module will not necessarily use all three kinds. As a general rule, each type of Study Card is used as follows:

Study Cards
- Students read the prompt on the front of the card to themselves and respond without looking at the sample answer on the back.
- Sample answers provide a way for students to check their thinking.
- If the prompt contains a problem, mastery is not defined as memorizing the answer to that problem. Mastery involves the student’s ability to respond appropriately to other problems of the same type.

Game Cards
- Students remove the game cards to use during activities as indicated in your Instructor Edition.
- Students return the game cards to the “Things to Learn” ring after the activity. Students should be encouraged to play the game or repeat the activity at home or with friends.

Blank Cards
- You or students create customized Study Cards as needed. Possible uses include:
 - Vocabulary
 - Skills, concepts, or procedures that students still need to work on
 - Sample problems

Study Cards come with two rings and two covers. Begin with all of the cards on the “Things to Learn” ring. As students master the topic on a given card, they can move it to the “Things I Know” ring. Students may move cards from one ring to the other any time they think they have mastered the content. You should check periodically during conferences and partner work to ensure that students are working with their cards regularly and that the content on the cards has been mastered. You should:

- Decide whether you will put the Study Cards on the rings for students or have students do this. If you plan to have students do this, allow a few minutes in Lesson 1 or 2 for this activity.
- Explain the purpose of Study Cards to students early in the module and model their use. You will usually do this at the end of Lesson 1 or 2.
- Review the Study Cards for each lesson during preparation.
- Decide whether the cards can stand on their own or whether you need to allow time to go through the prompts on the front of some or all of the cards for the lesson.
- Decide whether there are specific topics or examples that you want students to add to the set using blank cards. Allow time to do so, if applicable.
- Allow 2–3 minutes for students to work with their Study Cards at the end of the lesson at least twice a week. During this time, students can:
 - Review their cards individually or with a partner
 - Move cards from the “Things to Learn” ring to the “Things I Know” ring, as appropriate
 - Make customized Study Cards
- Remind students to use their Study Cards whenever they have a few minutes during the day.
- During conferences, ask students how and when they have used their Study Cards.
- Use Study Cards during conferences and focused teaching.
 - Use Study Cards as the topic of a conference. Review cards students have moved to the “Things I Know” ring to be sure they have mastered the targeted skill.
 - Ask students whether they feel they have mastered any additional cards. If you agree, have students move those cards to the “Things I Know” ring.
– Check to make sure the student knows those cards. When you have done your check, you might want to initial the card. By doing so, you can simply flip through the cards the next time and test the student on the ones that are not initialed.

Using the Student Book

• Students should write in the Student Book using a dark (thin-lined) marker with non-erasable ink.
 – Students should not erase anything that they write in the Student Book. Everything that they write represents their thinking at that time. You cannot erase thoughts once you have had them. You can change your mind or choose to disregard the thought, but you cannot erase it.
 – If the students make a mistake or decide to change something, they should draw a single line through the text or use an X to mark out a larger area.
 – If an individual student needs more space for a task, she should work on a separate sheet of paper. That sheet of paper should then be stapled to the appropriate page in the Student Book.

• The Student Books may have reminder notes in purple next to certain problems, which include instructions on how to correctly and completely answer the problem. In the beginning of the module, students will be taught such skills as how to make an estimate, write an answer as a complete sentence, sketch and label a diagram, etc.—then later in the module, these tasks will appear in reminder notes. Encourage students to check the reminder notes or the A Complete Solution to a Word Problem list to make sure they have finished all of the parts of a complete solution for that problem.

Presenting the Task

This ritual is used to introduce tasks when no specific instructions are given in your Instructor Edition. Specific instructions may be given if a task is used to introduce all or part of a ritual or a new representation. Specific instructions may also be given if the task has unique features or if it differs significantly from previous tasks. Any instructions in your Instructor Edition for a given task take priority over this ritual.

When You Are Asked to Do Presenting the Task

• Make sure all students are on the page in their Student Books that includes the task.
• Depending on the text, decide whether you will:
 – Read the task to the students while they read along.
 – Have a student read the task aloud while the rest of the group reads along.
 – Ask the students to read the task aloud as a group.
 – Ask the students to read the task to themselves.

• Tell students to read the task as if they were reading a story.
 – Listen for misunderstandings.
• Limit discussion to reading comprehension and language issues.
 – Ask questions such as the following:

 Tell me about the task in your own words.

 What does the task ask you to do (or find)?

 – Often the words that are unfamiliar in a task are not really important for completing the task. For example, if the task refers to a student giving some of her trading cards to a friend, it does not really matter if the student knows what trading cards are. The cards are simply objects that are being separated. Pay particular attention to words of
this type. They may require some explanation, especially for ELL students, but students need to learn to recognize when the word is used simply to give a context to the task. Tell students to use the “thing test.” Have them substitute the word “thing” for the unknown word. If the task makes sense with the substitution, then the meaning of the unknown word is probably not important.

– Obviously, there are words that are important for completing the task. For example, if the task refers to an isosceles triangle and students do not understand that this special type of triangle has two congruent sides and two congruent angles, they will not have the information that they need to complete the task. If, after applying the “thing test,” the task does not make sense or more information is needed, students should suspect that the meaning of the unknown word may be important.

• Do not discuss how to solve the task. You will discuss how to solve the task during probing for understanding, not during presenting the task. Your job during this portion of the lesson is to make sure students have a literal understanding of the task.

• End the presenting the task ritual by saying:

 “Do it now,” or “You may begin.”

– Students often do not know when to begin working on a problem. Often they will begin before listening to all of the directions. Teach them that you will use the phrase “Do it now” to begin the activity. (You can use any phrase you are comfortable with to tell students to begin work; just be consistent.)

– Tell students that they need to listen to all of the directions first. Then they will hear you say “Do it now.” This phrase lets them know that they can begin the task you have asked them to do.

– You will need to be very consistent with this phrase. It provides students with boundaries on listening and moving. It helps with the flow and organization of the lesson. Even though you will use the phrase consistently, the Teacher Edition will not prompt you to say “Do it now” every time it would be appropriate.

– After about two weeks, students will have become familiar with the phrase. They will know they must listen to all directions first. When you see that they have mastered listening completely before making their move to follow instructions, praise them on their success and let them know that they no longer need to hear you say “Do it now,” because it has become automatic.

• In a given lesson, you may repeat the presenting the task ritual two or more times.

Solo Work

Because you want students to respond thoughtfully to questions or to prompts in their Student Books, you have to give them time to think. Solo work is very short: often as little as 1–3 minutes. During this part of the lesson, you are teaching students to take a few minutes to think and work quietly, relying on their own resources, before they ask questions or begin interacting with others. It is important that you respect this need for quiet time, too. Have the needed materials and artifacts ready and visible to students so that you can point to them if required, instead of giving verbal directions.

During solo work, students work individually on the tasks given in the Math Navigator lessons. This is a quiet time. In most Math Navigator modules, students are taught to begin with the process of using “Ask Myself” questions. If students have questions that they cannot answer, or they don’t know what to do, they should:

• Look at past lessons
• Look at the charts (and other learning aids) that are posted
• Model the problem using counters or other materials
• Sketch a diagram or other representation
• Change the numbers to make the problem simpler
• Write what they do know
• Write down questions to ask later
• Check other resources

During solo work, students will often be working in their Student Books. When they do, be sure they observe the ritual for using the student book. Have counters, measuring tools, and other materials available to help students think about the task.

During solo work, you will observe students as they work. Your job is to ensure that students get started productively. Do not be too quick to offer additional help. Allow individual “struggle time.” Offer assurance, not assistance.

Partner Work

During partner work, each student works with another student on the tasks given in the lessons. Working in pairs optimizes responsibility and feedback: Everyone has to present and everyone has to listen; students cannot “hide” in the group.

Students should not move from solo work into partner work until you indicate that it is time to do so, unless they are working on a series of problems and moving into and out of solo work and partner work at their own speed.

During partner work, students talk together quietly and engage in activities such as:
• Explaining to their partner what they think the task is asking.
• Showing what they did on paper and explaining their work to their partner.
 – If they have not written anything down yet, showing their partner what they think they should do.
• Listening to their partner explain the same things.
• If either partner tried something that did not work, both students should talk about why it did not work.
• Comparing what they did.
 – How is their work the same?
 – How is their work different?
• Completing their solutions.
• Checking to see that their partner’s answer is written in a complete sentence and answers the question(s).

Pairs should not expect to complete this entire list during partner work. Partner work should last 2–6 minutes for most tasks. Partner work is usually followed by a group discussion, probing for understanding.

You will monitor student work during partner work. If it appears that all of the students are struggling to understand something, you may want to stop them and discuss the issue as a group. If only one or two students appear to be unclear, work with them individually. As you work with students, remember:

• *Ask students to describe, explain, and interpret.*
• The purpose of an intervention is to increase the depth of reflective thought. Challenge students to describe what they are doing, or interpret or explain something. For example:

 Can you say what that means?

 Can you show us why you say that?
• Do not do the thinking for students.
• Some students are not comfortable explaining their thinking. They defer to the instructor to do this work. They know from experience that the instructor will eventually take over. Resist the temptation to think or talk for the student. If a student says that he cannot explain something, ask another student in the group to explain, or ask the student to choose some part of the problem that he can explain. Don’t let him off the hook. When a student asks you a question, don’t answer it (at least not right away). Ask someone else in the group to answer, or ask another question that can help the student delve into his own thought process.

• Don’t be afraid of leaving discussions unresolved.
• Some instructors like to resolve discussions before they leave the group. When the instructor leads the group to the answer, then leaves, the discussion has ended. Students are left with nothing to think about, or they go on to a different problem. It is often better to reawaken interest with a further interesting question that builds on the discussion and then leave the group to discuss it alone. You can revisit any points that students have particular trouble with when you bring closure to the task during probing for understanding.

During partner work, you work with individuals or pairs to provide additional assistance, to evaluate student progress on the Class Profile sheet, or to hold individual conferences. (See the ritual for conferencing.) If you ask one member of a pair to talk to you individually, the other student should proceed to work on the task following the ritual for solo work until his partner rejoins him.

Probing for Understanding
After students have worked on a task in solo work and (usually) partner work, you will reconvene the students as a group to share student work and discuss the task using the probing for understanding ritual. This is the part of the lesson in which student thinking becomes visible to the whole group. Students will internalize the learning and learn from each other. You will gather information that may impact subsequent instruction.

Your role in probing for understanding is to ask questions that will uncover misconceptions and to guide the discussion in ways that will clear up these misconceptions.

The students’ role is to listen, to answer when called upon, and to ask questions when they do not understand something. Students need to realize that they are expected to understand every method or approach that is presented, as well as all discussions.

When probing for understanding, you will ask questions from one or more of the following categories. The Instructor Edition will indicate which category of questions you should use.

Understanding the Task

- Tell me about the task in your own words.
- What are you counting or measuring? How much or how many are there?
- What are you trying to find?
About how big will the answer be?

How did you make your estimate?

Understanding the Visual Representation or Model

<Name>, I noticed that you used <material> to help you understand the task. Can you show us what you did and tell us how it helped you?

Where do you see <one of the quantities in the task> in your <model, diagram, number line, table, etc.>?

How can we see <operation name> in your <model, diagram, number line, table, etc.>?

<Name>, you have used a representation that is different from others that I’ve seen. Can you show us your <model, diagram, number line, table, etc.> and tell us how it helped you?

Let’s look at <Name 1>’s visual representation and <Name 2>’s model (using counters, measuring tools, etc.).

– How are they the same?
– How are they different?
– Where do we see <various quantities> in the visual representation? In the hands-on method?

Understanding the Equation

What’s an equation that matches this <diagram, number line, table, etc.>?

Where do you see <one of the quantities in the task> in your equation?

Where do you see <the answer> in your equation?

How does <Name 1>’s equation compare to <Name 2>’s equation?

– How are they the same?
– How are they different?
– Will they get the same answer? Why or why not?

<Name> solved the problem using column form. How is her column form like this equation?

– Where do we see <one of the quantities in the task> in the column form?
 In the equation?
– Where do we see <the answer> in the column form? In the equation?
– Will both forms give the same answer? Why or why not?
Understanding the Solution Process

- How did you decide to solve the problem? Why did you choose that method?
- Where do you see <the answer> in your <diagram, number line, table, etc.>?
- Did anyone try a method that didn’t work? – Tell us what you tried. – Why didn’t it work? – Would it ever work? Why or why not?

(For tasks that can be solved using a single operation): How did you know that this task was a(n) <operation> task? – Could we have used another operation to solve this task? – What makes a task a(n) <operation> situation?

Comparing Representations

- Let’s look at the diagram and the equation. – How are they the same? – How are they different? – Where do we see <various quantities> in the diagram? In the equation?

Repeat the same type of questioning to compare any combination of the following:
• The problem as given in the Student Book
• Physical methods of representing the problem with counters, ribbon, measuring instruments, etc.
• Visual representations such as diagrams, number lines, tables, etc.
• Equations
• Column form arithmetic

Conferencing

The purpose of a conference is to guide students toward improved mathematical thinking and independence. At the beginning of a module, you can use conferences to survey students’ prior knowledge. Ask for an informal history of their mathematics experience. Ask them what areas they feel need the most improvement. Once you have had a chance to get to know your students, you will focus most conferences on some aspect of the work that they have been doing in the module.

Your Instructor Edition for a given module lists specific suggestions for conference topics for that module. Conferencing and individualized instruction are only possible when students are fully engaged in doing and discussing mathematics, so it is critical that you create clear expectations for partner work behavior.
• Either you or the student can request a conference.
• Conferences take place during partner work and usually last 3–6 minutes.
• Conferences should be uninterrupted, one-on-one time between you and the student.
• You can also conference with small groups.
• Students should bring their Student Books and Study Cards to conferences.

If students have questions while you are conferencing with someone else, they need to look at the What to Do If You Get Stuck list in the Student Book and choose a strategy. They should not interrupt a conference. If a student finds herself without a partner (because her partner is conferencing with you), she should follow the solo work ritual until her partner returns.

A conference can consist of informal monitoring or a more formal assessment. You will use the Class Profile as a resource in talking with students about their work and make notes on that profile. (See Appendix C for more information about Class Profiles.)

A conference might focus on Study Cards. You can test students on the Study Cards on their “Things I Know” rings. Also, you or the student can fill out blank Study Cards to give the student additional problems in areas of weakness.

A conference might be a time to set individual goals, clear up confusion, or share successes. By the end of a conference, students should have clear expectations and established goals for their work. These goals should be recorded so the student always knows where to find the next steps. Each student should have at least two conferences during a Math Navigator module.

Using a Workspace

Students will use a variety of materials in Math Navigator modules. The following is a list of some of the types of materials you might encounter in a module:

- Measuring cups (and sand, rice, etc.)
- Connecting cubes
- String/yarn
- Base-10 blocks
- Sticks/straws
- Colored tiles
- Number cubes
- Number cards
- Rulers

To introduce the concept of using a workspace, tell students:

- We use a workspace when we use materials. Part of your desk—the space directly in front of you—will be used as a workspace.

- Please clear the workspace in front of you. A clear workspace helps you focus on your work with materials while you solve problems.
Your workspace should be directly in front of you. Your materials should be placed above the workspace. Your Student Book should be placed to the right or left of the workspace, depending on which hand you use for writing.

When using the workspace with different materials, such as measuring cups, number cubes, number cards, string, etc., tell students:

- You will work with your material(s) on this workspace.
- First, we will go over the task together and make sure that you understand it. Then you will wait until I say “Do it now” to place the materials on your workspace and perform the task.

When using a workspace for manipulatives, some instructors like to give each student a blank piece of paper or placemat on which to put the objects they are using. The paper or mat is referred to as a “plain workspace.” However, it is fine to have students simply use a clear desk or table space. Sometimes you may want to distribute sheets of paper with preprinted organizers such as part-part-whole diagrams or place value tables for certain types of tasks. Tell students:

- This workspace can be used for counting objects in order to find a number or show a number.
- When you are told the number to represent on the workspace, you will wait until I say “Do it now” to place the objects on your workspace.
- When I tell you, place the objects on the left side of your workspace.
- Touch and slide them to the right side until they are all completely counted and all are on the right side of the workspace.
- First, I will have you count my materials with me, then I will have you count your materials as I observe you. Remember to wait until I say “Do it now” before beginning to work with the objects.

Commands or Verbal Instructions

- Show me …
 – Ask students to do something with the materials on their workspace.

- Clear your workspace …
 – This instruction is used after students have finished with one task on their workspace and are ready to go to a second task.

- Do it now or You may begin
 – Students often do not know when to begin moving their materials or when to record in their Student Books. Often they will begin before listening to all of the directions. Teach them that you will use the phrase “Do it now” to let them know when to begin the activity. (You can use any phrase you are comfortable with to tell students to begin work; just be consistent.)