Oklahoma Priority Academic Student Skills for Science: Physical Science (High School)

<table>
<thead>
<tr>
<th>OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE</th>
<th>PAGE(S) WHERE TAUGHT (If submission is not a text, cite appropriate resource(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: Asterisks (*) have been used to identify standards and objectives that must be assessed by the local school district. All other skills may be assessed by the Oklahoma School Testing Program (OSTP). Book icons () identify Information Literacy skills. Students are best served when these are taught in collaboration and cooperation between the classroom teacher and the library media specialist.</td>
<td></td>
</tr>
</tbody>
</table>

Priority Academic Student Skills

PHYSICAL SCIENCE

Standards for Inquiry and the Physical Sciences (including Earth/Space Science)

The Priority Academic Student Skills (PASS) should be taught by investigating broad, integrated content, concepts, and principles of major themes in the physical sciences.

SCIENCE PROCESSES AND INQUIRY

Process Standard 1: Observe and Measure - Observing is the first action taken by the learner to acquire new information about an object or event. Opportunities for observation are developed through the use of a variety of scientific tools. Measurement allows observations to be quantified.

The student will accomplish these objectives to meet this process standard.

1. Identify qualitative and quantitative changes given conditions (e.g., temperature, mass, volume, time, position, length) before, during, and after an event.
 - TR: Lab Manual: 5-36, 63-100, 117-211, 283-344

2. Use appropriate tools (e.g., metric ruler, graduated cylinder, thermometer, balances, spring scales, stopwatches) when measuring objects and/or events.
 - TR: Lab Manual: All labs: 1-347

3. Use appropriate System International (SI) units (i.e., grams, meters, liters, degrees Celsius, and seconds); and SI prefixes (i.e. micro-, milli-, centi-, and kilo-) when measuring objects and/or events.
OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE

<table>
<thead>
<tr>
<th>OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE</th>
<th>PAGE(S) WHERE TAUGHT (If submission is not a text, cite appropriate resource(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Use appropriate System International (SI) units (i.e., grams, meters, liters, degrees Celsius, and seconds); and SI prefixes (i.e. micro-, milli-, centi-, and kilo-) when measuring objects and/or events.</td>
<td>SE/TE: 648, 649, 671, 739, 783, 821, 856, 857, 865, 891</td>
</tr>
<tr>
<td></td>
<td>TR: Lab Manual: All labs: 1-347</td>
</tr>
</tbody>
</table>

Process Standard 2: Classify - Classifying establishes order. Objects and events are classified based on similarities, differences, and interrelationships.

The student will accomplish these objectives to meet this process standard.

1. Using observable properties, place an object or event into a classification system.

2. Identify the properties by which a classification system is based.

OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE

<table>
<thead>
<tr>
<th>PAGE(S) WHERE TAUGHT</th>
</tr>
</thead>
</table>

Process Standard 3: Experiment - Experimenting is a method of discovering information. It requires making observations and measurements to test ideas.

The student will accomplish these objectives to meet this process standard.

1. Evaluate the design of a physical science investigation.

 TR: Laboratory Manual: All labs 1-347

2. Identify the independent variables, dependent variables, and controls in an experiment.

 TR: Laboratory Manual: All labs 1-347

3. Use mathematics to show relationships within a given set of observations.

4. Identify a hypothesis for a given problem in physical science investigations.

 TR: Laboratory Manual: All labs 1-347

SE = Student Edition
TE = Teacher Edition
TR = Teaching Resources
TECH = Technology

3
5. Recognize potential hazards and practice safety procedures in all physical science activities.

Process Standard 4: Interpret and Communicate - Interpreting is the process of recognizing patterns in collected data by making inferences, predictions, or conclusions. Communicating is the process of describing, recording, and reporting experimental procedures and results to others. Communication may be oral, written, or mathematical and includes organizing ideas, using appropriate vocabulary, graphs, other visual representations, and mathematical equations.

Student will accomplish these objectives to meet this process standard.

<table>
<thead>
<tr>
<th>Objective</th>
<th>SE/TE</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE</td>
<td>PAGE(S) WHERE TAUGHT</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td></td>
</tr>
</tbody>
</table>
| (Continued)
3. Interpret data tables, line, bar, trend, and/or circle graphs. | SE/TE: 700, 704, 742, 747, 775, 783, 786, 804, 811, 824, 853, 857, 860, 865, 871, 879
TR: Laboratory Manual: All labs 1-347 |
OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE

Process Standard 5: Model - Modeling is the active process of forming a mental or physical representation from data, patterns, or relationships to facilitate understanding and enhance prediction.

The student will accomplish these objectives to meet this process standard.

1. Interpret a model which explains a given set of observations.
 - **SE/TE:** 11, 30, 96, 166, 169, 173, 188, 193, 219, 224, 231, 265, 291, 300, 304, 308, 316, 317, 382, 408, 544, 596, 671, 705, 714, 739, 766, 793, 819, 821, 856, 860

2. Select predictions based on models.
 - **SE/TE:** 188, 224, 265, 382, 408, 544, 596, 671, 705, 714, 856, 860

3. Compare a given model to the physical world.

Process Standard 6: Inquiry - Inquiry can be defined as the skills necessary to carry out the process of scientific or systemic thinking. In order for inquiry to occur, students must have the opportunity to ask a question, formulate a procedure, and observe phenomena.

The student will accomplish these objectives to meet this process standard.

1. Formulate a testable hypothesis and design an appropriate experiment relating to the physical world.
 - **TR:** Laboratory Manual: All labs 1-347

2. Design and conduct physical science investigations in which variables are identified and controlled.
 - **SE/TE:** 27, 78, 122, 473, 496, 524, 525
 - **TR:** Laboratory Manual: All labs 1-347
OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE

| *3.* Use a variety of technologies, such as hand tools, measuring instruments, and computers to collect, analyze, and display data. | SE/TE: 18, 22, 23, 24, 25, 26, 46, 56, 60, 61, 64, 90, 92, 93, 119, 143, 150, 151, 154, 184, 185, 196, 220, 221, 254, 255, 285, 288, 300, 316, 317, 349, 352, 405, 429, 438, 439, 454, 467, 470, 476, 493, 524, 525, 563, 571, 593, 623, 632, 648, 649, 671, 697, 739, 745, 783, 793, 821, 856, 857, 889
TR: Laboratory Manual: All labs 1-347 |
|---|---|
| *4.* Inquiries should lead to the formulation of explanations or models (physical, conceptual, and mathematical). In answering questions, students should engage in discussions (based on scientific knowledge, the use of logic, and evidence from the investigation) and arguments that encourage the revision of their explanations, leading to further inquiry. | SE/TE: 1, 6, 18, 27, 42, 46, 56, 61, 71, 79, 90, 93, 99, 102, 117, 119, 125, 135, 151, 157, 167, 173, 184, 185, 196, 215, 220, 221, 227, 243, 254, 255, 261, 265, 273, 278, 304, 316, 317, 320, 327, 330, 355, 360, 380, 383, 386, 389, 401, 405, 411, 424, 429, 439, 445, 450, 454, 463, 467, 473, 491, 493, 499, 502, 505, 524, 525, 531, 542, 544, 559, 563, 571, 593, 606, 612, 623, 629, 632, 637, 649, 659, 667, 668, 671, 687, 697, 705, 714, 734, 739, 743, 745, 749, 766, 783, 789, 793, 819, 821, 827, 855, 856, 857
TR: Laboratory Manual: All labs 1-347 |

PHYSICAL SCIENCE

High School

Standard 1: Structure and Properties of Matter - All matter is made up of atoms. Its structure is made up of repeating patterns and has characteristic properties.

The student will engage in investigations that integrate the process standards and lead to the discovery of the following objectives:

1. Matter is made up of minute particles called atoms, and atoms are composed of even smaller components (i.e., protons, neutrons, and electrons).
TR: Reading and study workbook: 4.1, 4.2, 4.3; Reading and Study Workbook Math Skills: 4.2; Laboratory Manual: 37-46
TECH: Transparencies: 4.1, 4.2, 4.3; Presentation Pro CD-ROM: 4.1, 4.2, 4.3; Discovery Channel Videotapes and DVDs: Go For Gold; Go Science News: web code: cce-1042; SciLinks: web code: cen-1041, 1043; PHSchool.com: web code: cca-1040

2. An element is composed of a single type of atoms. When elements are listed in order according to the number of protons (called the atomic number), repeating patterns of physical and chemical properties identify families of elements with similar properties.
SE/TE: 39, 40, 110, 131, 132, 133, 134, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155
TR: Reading and study workbook: 5.2, 5.3; Reading and Study Workbook Math Skills: 5.2; Laboratory Manual: 47-56
2. An element is composed of a single type of atoms. When elements are listed in order according to the number of protons (called the atomic number), repeating patterns of physical and chemical properties identify families of elements with similar properties.

3. Matter has characteristic properties, such as boiling points, melting points, and density, which distinguish pure substances and can be used to separate one substance from another.

Standard 2: Motion and Forces - The motion of an object can be described by its position, direction of motion, and speed. A change in motion occurs when a net force is applied.

1. Objects change their motion only when a net force is applied. Laws of motion are used to determine the effects of forces on the motion of objects.

2. Gravitation is a universal force that each mass exerts on any other mass.

Standard 3: Interactions of Energy and Matter - Energy, such as potential, kinetic, and field, interacts with matter and is transferred during these interactions.

The student will engage in investigations that integrate the process standards and lead to the discovery of the following objectives:
Physical Science: Concepts In Action with Earth & Space Science © 2006
Correlated to:
Oklahoma Priority Academic Student Skills for Science: Physical Science, (High School)

<table>
<thead>
<tr>
<th>OKLAHOMA PRIORITY ACADEMIC STUDENT SKILLS (PASS) STANDARDS FOR SCIENCE</th>
<th>PAGE(S) WHERE TAUGHT (If submission is not a text, cite appropriate resource(s))</th>
</tr>
</thead>
</table>
| 1. All energy can be considered to be either kinetic energy, which is the energy of motion; potential energy, which depends on relative position; or energy contained by a field, such as electromagnetic waves. | SE/TE: 6, 71, 447, 448, 449, 450, 452, 456, 457, 532, 533, 539, 540, 828, 829
TR: Reading and study workbook: 15.1, 15.2; Reading and Study Workbook Math Skills: 15.1; Math skills and problem solving workbook: 15.1, 15.2; Laboratory Manual: 157-166
TECH: Transparencies: 15.1, 15.2; Presentation Pro CD-ROM: 15.1, 15.2; Discovery Channel Videotapes and DVDs: Physics of Fun; Go SciLinks: web code: ccn-2151, 2152; PHSchool.com: web code: cca-2150, ccd-2150 |
| 2. Waves, including sounds and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter (such as used in telescopes, solar power, and telecommunication technology). | SE/TE: 452, 464, 500, 501, 502, 503, 508, 509, 510, 511, 512, 514, 516, 517, 518, 519, 520, 522, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 554, 555, 560, 561, 565, 566, 580, 581, 582, 583, 584, 585, 586, 587, 684, 686, 687, 688, 689, 728, 729, 828, 829
TR: Reading and study workbook: 17.1, 17.3, 17.4, 18.1, 18.2, 18.4, 18.5, 19.3, 22.5; Math skills and problem solving workbook: 18.2; Laboratory Manual: 177-198

Standard 4: The Earth System - A system that has changed over time, which includes dynamic changes in the earth’s crust, is the Earth system.

The student will engage in investigations that integrate the process standards and lead to the discovery of the following objectives:

1. Geologic time can be estimated by observing rock sequences and using fossils to correlate the sequences at various locations. | SE/TE: 732, 733, 734, 735, 736, 737, 738, 741, 742, 743
TR: Reading and study workbook: 23.6; Reading and Study Workbook Math Skills: 23.6
2. The solid crust of the earth consists of separate plates that move very slowly pressing against one another in some places and pulling apart in other places (i.e., volcanoes, earthquakes and mountain building).

Standard 5: The Universe - The universe is an ever-changing system of matter and energy that exists now, in the past, and in the future.

The student will engage in investigations that integrate the process standards and lead to the discovery of the following objectives:

1. The stars differ from each other in size, temperature, and age, but they appear to be made up of the same elements that are found on the earth.

2. All stars have a life cycle including birth, development, and death. Fusion reactions in stars release great amounts of energy and matter over millions of years.