A Correlation of

©2017

to the

Georgia Standards of Excellence Chemistry

Introduction

The following document demonstrates how *Pearson Chemistry* ©2017 supports the Georgia Standards for Excellence in Chemistry. Correlation references are to the Student Edition (SE) and Teacher Edition (TE).

Pearson Chemistry combines proven and tested content with cutting-edge digital support and hands-on learning opportunities. This program provides you with everything you need to engage and motivate your students, as well as the tools to support the varied types of learners in your classroom.

Pearson Chemistry is built on a learning model that connects curriculum, instruction, and assessment to the "Big Ideas" of chemistry that develops deep understanding.

Pearson Chemistry provides all of the problem-solving and math support that students need to be successful in the course, with ample opportunity for practice both in the Student Edition and in the program's digital resources.

Pearson Chemistry helps you meet the unique learning styles of each student in your classroom with a variety of resources. A variety of assessment opportunities helps you monitor student progress ensure student success on high-stakes tests.

Pearsonchem.com provides cutting-edge digital content that engages students and teachers – anytime, anywhere, with numerous practice opportunities and visual support, including interactive art and animations. Online tutors step students through chemistry and math problems, expanding learning beyond the classroom.

Georgia Standards of Excellence	Pearson Chemistry
Chemistry	©2017
SC1. Obtain, evaluate, and communicate inform	nation about the use of the modern atomic
theory and periodic law to explain the characte	eristics of atoms and elements.
a. Evaluate merits and limitations of different models of the atom in relation to relative size, charge, and position of protons, neutrons, and electrons in the atom.	102-104, 105-109, 128-132 Lesson Check: 104, 109, 132 Quick Lab: 109 Chemistry & You: 133 Assessment: 152
	TE Only: Teach for Understanding: 101, 127 Check for Understanding: 103, 107 Explain: 103, 106, 129, 130, 131 Teacher Demo: 106, 107, 129 Differentiated Instruction: 106, 130 Extend: 107, 132
b. Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element's identity.	SE/TE: 112-114 TE Only: Explain: 113 Differentiated Instruction: 113
c. Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion.	SE/TE: 891 Chemistry & You: 891
d. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element.	SE/TE: 114-115, 116-119 Lesson Check: 119 Small-Scale Lab: 120 TE Only: Check for Understanding: 114, 116 Explain: 115, 116, 118

Georgia Standards of Excellence Chemistry	Pearson Chemistry ©2017
e. Construct an explanation of light emission and the movement of electrons to identify elements.	SE/TE: 138-145 Assessment: 152-153 Quick Lab: 142 Small-Scale Lab: 149 TE Only: Explain: 139, 140, 143, 145 Differentiated Instruction: 140 Class Activity: 141
f. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms (i.e. including atomic radii, ionization energy, and electronegativity).	SE/TE: 46-47, 160-162, 164-166, 167-173, 174-182 Lesson Check: 166, 173, 182 Quick Lab: 180 Small-Scale Lab: 184 Assessment: 186-190 STEM Activity - Periodic Patterns: 906 TE Only: Explain: 46, 161, 162, 164, 166, 168, 170, 172, 175, 177, 178, 179, 182 Teacher Demo: 161, 171, 177, 178, 179 Differentiated Instruction: 162, 165, 169, 171, 177, 179 Check for Understanding: 164, 170, 176, 178 Class Activity: 165, 176 Explore: 181 Performance Tasks: 185
g. Develop and use models, including electron configuration of atoms and ions, to predict an element's chemical properties.	SE/TE: 170-173, 194-199, 209-210 Lesson Check: 173, 199, 212 Small-Scale Lab: 200 Assessment: 214-216 TE Only: Explain: 170, 172, 195, 196, 198 Check for Understanding: 170, 196 Teacher Demo: 171, 195 Differentiated Instruction: 171, 195, 197 Class Activity: 197

Georgia Standards of Excellence	Pearson Chemistry
Chemistry	©2017
SC2. Obtain, evaluate, and communicate inform	nation about the chemical and physical
properties of matter resulting from the ability	of atoms to form bonds.
a. Plan and carry out an investigation to gather	SE/TE:
evidence to compare the physical and chemical	250-251
properties at the macroscopic scale to infer the	Small-Scale Lab: 254
strength of intermolecular and intramolecular	TF Oaka
forces.	TE ONIY:
	Explain. 251 Differentiated Instruction: 251
	Teacher Demo: 252
b. Construct an argument by applying principles	SE/TE:
of inter- and intra- molecular forces to identify	222, 225, 247-250, 250-253
substances based on chemical and physical	Lesson Check: 253 (#32)
properties.	Assessment: 257 (#68)
	Small-Scale Lab: 254
	IE ONIY: Evolution 222, 249, 251
	ExpldIII: 223, 248, 251 Differentiated Instruction: 222, 251
	Class Activity: 249
	Teacher Demo: 250, 252
	Check for Understanding: 252
c. Construct an explanation about the	SE/TE:
importance of molecular-level structure in the	211-212, 750-751, 764, 806-807, 814, 819, 822-
functioning of designed materials. (<u>Clarification</u>	823, 846
<u>statement:</u> Examples could include why	Lesson Check: 212 (#21)
of metal, flexible but durable materials are made	Chemistry & You: 239 Quick Lab: 750
up of long chained molecules, and	
pharmaceuticals are designed to interact with	TE Only:
specific receptors.)	Teacher Demo: 211
	Differentiated Instruction: 211
	Extend: 212, 751
	Performance Tasks: 753

A Correlation of Pearson Chemistry ©2017	
to the Georgia Standards of Excellence in Chemistr	y

Georgia Standards of Excellence Chemistry	Pearson Chemistry ©2017
d. Develop and use models to evaluate bonding configurations from nonpolar covalent to ionic bonding. (<i>Clarification statement:</i> VSEPR theory is not addressed in this element.)	SE/TE: 201-206, 209-212, 222-225, 226-234, 247 Quick Lab: 207, 238 Lesson Check: 207, 225, 238 Assessment: 214, 215 (#47-51), 256 (#39, 46)
	TE Only: Check for Understanding: 202, 205, 210, 229, 232 Explain: 202, 223, 228, 230, 232 Class Activity: 203, 204, 205, 227, 229 Differentiated Instruction: 204, 227, 231 Teacher Demo: 210, 211, 234, 235 Performance Tasks: 213
e. Ask questions about chemical names to identify patterns in IUPAC nomenclature in order to predict chemical names for ionic (binary and ternary), acidic, and inorganic covalent compounds.	SE/TE: 274-275, 278, 281-282, 285-288 Quick Lab: 279 Lesson Check: 279 (#25), 283 (#30), 288 (#41-45) Assessment: 298 (#72, 73, 76), 299 (#82-84)
	TE Only: Class Activity: 274, 275 Explain: 275, 281
SC3. Obtain, evaluate, and communicate inform Matter is used to determine chemical composit	nation about how the Law of Conservation of ion in compounds and chemical reactions.
a. Use mathematics and computational thinking to balance chemical reactions (i.e., synthesis, decomposition, single replacement, double replacement, and combustion) and construct an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	SE/TE: 356-367 Lesson Check: 367 Assessment: 377 (#38-44), 378 (#49-52, 54-55, 58) TE Only: Explain: 357, 359, 361, 362, 363 Check for Understanding: 358, 362 Differentiated Instruction: 357, 364 Teacher Demo: 360, 362, 365, 366
b. Plan and carry out an investigation to determine that a new chemical has been formed by identifying indicators of a chemical reaction (e.g., precipitate formation, gas evolution, color change, water production, and changes in energy to the system).	SE/TE: Small-Scale Lab: 374 TE Only: Teacher Demo: 360, 362, 365, 366 Small-Scale Lab: 374

6

Georgia Standards of Excellence Chemistry	Pearson Chemistry ©2017
 c. Use mathematics and computational thinking to apply concepts of the mole and Avogadro's number to conceptualize and calculate percent composition empirical/molecular formulas mass, moles, and molecules relationships molar volumes of gases 	SE/TE: 306-315, 317-323, 325-333 Lesson Check: 315, 323, 333 Small-Scale Lab: 324 Quick Lab: 328 Chemistry & You: 316 Assessment: 338-341 TE Only: Explain: 307, 308, 309, 310, 311, 312, 318, 319, 320, 322, 323, 326, 331, 332, 333 Differentiated Instruction: 308, 313, 330 Check for Understanding: 310, 314, 332 Teacher Demo: 313, 321 Class Activity: 314, 330
d. Use mathematics and computational thinking to identify and solve different types of reaction stoichiometry problems (i.e., mass to moles, mass to mass, moles to moles, and percent yield) using significant figures. (<i>Clarification <u>statement</u>:</i> For elements c and d emphasis is on use of mole ratios to compare quantities of reactants or products and on assessing students' use of mathematical thinking and not on memorization and rote application of problem- solving techniques.)	SE/TE: 384-389, 390-398, 400-406, 408 Lesson Check: 389, 398, 408 Chemistry & You: 397, 407 Small-Scale Lab: 399 Quick Lab: 404 Assessment: 411-415 TE Only: Explain: 385, 386, 388, 391, 393, 394, 401, 402, 406 Class Activity: 396, 403, 405 Differentiated Instruction: 386, 396, 401, 402 Teacher Demo: 387, 392, 401 Check for Understanding: 387, 394 Chemistry & You: 397, 407
e. Plan and carry out an investigation to demonstrate the conceptual principle of limiting reactants.	SE/TE: Quick Lab: 404 TE Only: Teacher Demo: 401 Class Activity: 403

Georgia Standards of Excellence	Pearson Chemistry
Chemistry	©2017
SC4. Obtain, evaluate, and communicate inform	nation about how to refine the design of a
chemical system by applying engineering principles to manipulate the factors that affect a	
chemical reaction.	
a. Plan and carry out an investigation to provide	SE/TE:
concentration temperature and pressure on	Outick Lab: 600
chemical reactions (Clarification statement	Lesson Check: $601 (#2)$
Pressure should not be tested experimentally)	Assessment: 638 (#56, 57)
	STEM Activity - Rate of Change During a
	Reaction: 908
	TE Only:
	Explain: 598, 601
	Teacher Demo: 599
b. Construct an argument using collision theory	SE/TE:
and transition state theory to explain the role of	596-597
activation energy in chemical reactions.	Lesson Check: 601 (#4)
(<u><i>Clarification statement:</i></u> Reaction coordinate	Assessment: 638 (#54, 55)
changes in energy (direction flow and quantity)	TE Only:
during the progress of a chemical reaction)	Explain: 596
	Use Visuals: 597
c. Construct an explanation of the effects of a	SE/TE:
catalyst on chemical reactions and apply it to	596-597, 600-601
everyday examples.	Lesson Check: 601 (#5)
	STEM Activity - Producing Sulfuric Acid: 909
	TE Only:
	Explain: 596, 601
	Use An Analogy: 596
d. Refine the design of a chemical system by	SE/TE:
altering the conditions that would change	612-615
forward and reverse reaction rates and the	Lesson Check: 620 (#25)
statement. Emphasis is on the application of	TE Only:
LeChâtelier's principle.)	Explain: 612, 613
	Teacher Demo: 612, 615
	Check for Understanding: 614
	Chemistry & You: 614
	Differentiated Instruction: 615

Georgia Standards of Excellence	Pearson Chemistry
Chemistry	©2017
SC5. Obtain, evaluate, and communicate inforr	nation about the Kinetic Molecular Theory to
model atomic and molecular motion in chemic	al and physical processes.
a. Plan and carry out an investigation to calculate	SE/TE:
the amount of heat absorbed or released by	562-567, 578-579
chemical or physical processes. (<u><i>Clarification</i></u>	Lesson Check: 568, 582 (#38, 41)
<u>statement:</u> Calculation of the enthalpy, heat	Small-Scale Lab: 583
change, and Hess's Law are addressed in this	
element.)	TE Only:
	Teacher Demo: 557, 566
	Check for Understanding: 563, 579
	Class Activity: 563
	explain: 564, 565, 579
b. Construct an explanation using a heating	SE/TE:
curve as evidence of the effects of energy and	569-575
intermolecular forces on phase changes.	Quick Lab: 571
	Lesson Check: 575
	TE Only:
	Class Activity: 570
	Explain: 572, 573, 574
	Teacher Demo: 572
	Check for Understanding: 572
	Differentiated Instruction: 573
c Develop and use models to quantitatively	SE/TE·
conceptually and graphically represent the	450-454 456-463 464-466 467-468
relationships between pressure volume	Lesson Check: 454, 463, 468
temperature, and number of moles of a gas.	Ouick Lab: 467
	Assessment: 480-484
	TE Only:
	Explain: 451, 452, 453, 454, 457, 458, 460, 461,
	462, 465, 468
	Teacher Demo: 452, 458
	Differentiated Instruction: 455, 458, 460
	Class Activity: 460

Georgia Standards of Excellence Chemistry	Pearson Chemistry ©2017
SC6. Obtain, evaluate, and communicate inform	nation about the properties that describe
solutions and the nature of acids and bases.	
a. Develop a model to illustrate the process of	SE/TE:
dissolving in terms of solvation versus	494-495, 496-497, 664-665
dissociation.	Lesson Check: 501 (#10, 11, 13)
	TE Only:
	Explain: 495, 665
	Differentiated Instruction: 495, 665
	Check for Understanding: 496
b. Plan and carry out an investigation to evaluate	SE/TE:
the factors that affect the rate at which a solute	518-519, 520-521
dissolves in a specific solvent.	Lesson Check: 524 (#3, 5, 8)
	Assessment: 548 (#54)
	TE Only:
	Explain: 520, 521
	Check for Understanding: 520
	Differentiated Instruction: 521
	Teacher Demo: 522
c. Use mathematics and computational thinking	SE/TE:
to evaluate commercial products in terms of	525-531
their concentrations (i.e., molarity and percent	Lesson Check: 531
by mass).	Chemistry & You: 533
	Assessment: 548
	TE Only:
	Explain: 526, 528, 529, 530
	Class Activity: 527, 528
	Teacher Demo: 530
d. Communicate scientific and technical	SE/TE:
information on how to prepare and properly	525 (Figure 16.8), 528 (Figure 16.10)
label solutions of specified molar concentration.	Small-Scale Lab: 545
	TE Only:
	Class Activity: 527, 528
	Explain: 529
	Teacher Demo: 530

Georgia Standards of Excellence Chemistry	Pearson Chemistry ©2017
e. Develop and use a model to explain the effects of a solute on boiling point and freezing point.	SE/TE: 534-537, 540-544 Lesson Check: 537, 544 Assessment: 548-549 TE Only: Explain: 535, 537, 542 Class Activity: 536 Check for Understanding: 536, 542
f. Use mathematics and computational thinking to compare, contrast, and evaluate the nature of acids and bases in terms of percent dissociation, hydronium ion concentration, and pH. (<u>Clarification statement:</u> Understanding of the mathematical relationship between negative logarithm of the hydrogen concentration and pH is not expected in this element. Only a conceptual understanding of pH as related to acid/basic conditions is needed.)	SE/TE: 651, 653, 656, 660-661, 664-669 Lesson Check: 662 (#18-21), 669 (#27, 28) Quick Lab: 662 Small-Scale Lab: 670 STEM Activity - Producing Sulfuric Acid: 909 TE Only: Explain: 654, 656, 665, 666, 667 Extend: 655 Teacher Demo: 660 Differentiated Instruction: 660, 665, 666
g. Ask questions to evaluate merits and limitations of the Arrhenius and Bronsted-Lowry models of acid and bases.	SE/TE: 646-651 Lesson Check: 652 (#3, 4) Assessment: 684 (#52) TE Only: Explain: 647, 648, 649, 650, 651 Teacher Demo: 647 Extend: 648 Differentiated Instruction: 648, 650 Check for Understanding: 649, 651
h. Plan and carry out an investigation to explore acid-base neutralization.	SE/TE: 672-675 TE Only: Teacher Demo: 674 Check for Understanding: 674