A Correlation of

Pearson Integrated CME Project Mathematics I-III
©2013

to the

Common Core State Standards for Mathematics

High School
Introduction

This document demonstrates how *Pearson Integrated CME Project Mathematics I-III ©2013* meets the standards of the *Common Core State Standards for Mathematics*. Correlation references are to the pages of the Student and Teacher’s Editions.

The *Integrated CME Project* is an NSF-funded core mathematics program that was built for the Integrated Pathway of the Common Core State Standards. It includes content from algebra, geometry, as well as precalculus concepts. The program’s proven-effective pedagogy provides the focus, coherence, and rigor necessary to ensure today’s students master the challenging new Common Core State Standards. The program also incorporates technology and hands-on projects and activities to engage today’s digital students in deep mathematical learning.

Integrated CME Content includes Mathematics I, Mathematics II, and Mathematics III. Each course is focused on big ideas. *Integrated CME Project* is organized by coherent chapters. Chapters are comprised of investigation. Each Investigation is then composed of 3-6 lessons. The basic mathematics of each Investigation is accessible to all, and each Investigation can ultimately challenge the best students. The students work from a more informal to formal understanding of the mathematical topic explored in that particular chapter. The Investigation wrap-up, called Mathematical Reflections, provides an opportunity to review and summarize at the end of the chapter—good preparation for the Next-Generation assessments that will require students to justify their conclusions and mathematical understandings in writing. A Chapter Project extends student understanding by presenting challenges and highlighting connections to additional topics—projects are great preparation for performance tasks that will be on the upcoming Next-Generation assessments.

This document demonstrates the high degree of success students will achieve by using *Pearson Integrated CME Project Mathematics I-III*.

Copyright ©2014 Pearson Education, Inc. or its affiliate(s). All rights reserved
Table of Contents

Math Practices ... 1

Number and Quantity ... 9

Algebra ... 15

Functions ... 24

Geometry ... 37

Statistics & Probability ... 46
Math Practices

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1 Make sense of problems and persevere in solving them.</td>
<td></td>
</tr>
<tr>
<td>Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.</td>
<td></td>
</tr>
<tr>
<td>The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics I SE/TE:
- **Checking Your Understanding:** (#1), 39 (#7), 204 (#5), 333 (#4, 6)
- **On Your Own:** 15 (#6), 107 (#6), 141 (#12-14), 147 (#14), 479 (#4)
- **Maintain Your Skills:** 27 (#16), 66 (#15), 76 (#14), 199 (#17), 214 (#10), 526 (#12-15)

Mathematics II SE/TE:
- **Checking Your Understanding:** 67 (#12), 79 (#7), 97 (#4), 123 (#6), 398 (#4-5), 471 (#7), 501 (#3-5), 564 (#11)
- **On Your Own:** 31 (#4), 73 (#12), 244 (#12), 679 (#14)
- **Maintain Your Skills:** 387 (#14), 449 (#11), 640 (#10), 740 (#13)

Mathematics III SE/TE:
- **Checking Your Understanding:** 9 (#4), 15 (#12), 459 (#3), 596 (#1)
- **On Your Own:** 68 (#7), 304 (#9-10), 338 (#11-12), 376 (#15), 460 (#13), 590 (#15)
- **Maintain Your Skills:** 106 (#4), 136 (#23), 205 (#13), 309 (#17-18), 557 (#22)

★ indicates modeling standards
(+) Standards needed for advanced courses such as Calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>MP2 Reason abstractly and quantitatively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.</td>
</tr>
</tbody>
</table>

Integrated CME Project ©2013

The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.

Mathematics I

SE/TE:
- **Checking Your Understanding:** 53 (#2), 74 (#5), 95 (#3, 5), 123 (#3), 174 (#4), 177 (#12), 368 (#1), 369 (#2)
- **On Your Own:** 97 (#11), 147 (#16), 176 (#9), 369 (#4), 677 (#5-6)
- **Maintain Your Skills:** 27 (#16), 177 (#14), 439 (#13)

Mathematics II

SE/TE:
- **Checking Your Understanding:** 57 (#7), 67 (#8), 103 (#5-10), 108 (#9), 130 (#5), 219 (#3)
- **On Your Own:** 31 (#4), 40 (#16), 57 (#12), 73 (#9), 564 (#11), 639 (#5), 678 (#12)
- **Maintain Your Skills:** 209 (#18), 337 (#25), 346 (#19), 679 (#16), 715 (#10)

Mathematics III

SE/TE:
- **Checking Your Understanding:** 27 (#3), 250 (#7), 320 (#8), 429 (#2), 488 (#8)
- **On Your Own:** 23 (#14), 46 (#13, 14), 53 (#5), 111 (#6), 350 (#8), 459 (#11), 599 (#19)
- **Maintain Your Skills:** 24 (#17), 72 (#10), 468 (#15-16)

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
MP3 Construct viable arguments and critique the reasoning of others.
Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.

Mathematics I
SE/TE:
Checking Your Understanding: 43 (#3-4), 69 (#3), 73 (#4), 317 (#6), 609 (#6)
On Your Own: 25 (#8), 96 (#8), 101 (#8), 166 (#10), 171 (#12), 335 (#13-14),
437 (#6)
Maintain Your Skills: 613 (#11), 618 (#17)

Mathematics II
SE/TE:
Checking Your Understanding: 26 (#8), 67 (#11), 97 (#4), 219 (#4), 225 (#7), 321 (#5), 500 (#2), 669 (#4)
On Your Own: 27 (#11, 13), 91 (#11-12), 103 (#13), 281 (#13), 322 (#16-17), 677 (#6), 777 (#10)
Maintain Your Skills: 486 (#12), 488 (#10), 504 (#19)

Mathematics III
SE/TE:
Checking Your Understanding: 182 (#2), 224 (#7), 319 (#4)
On Your Own: 217 (#13), 225 (#11), 286 (#13), 305 (#14-15), 362 (#14), 369 (#17), 497 (#13-14), 598 (#14), 599 (#20), 761 (#12)
Maintain Your Skills: 576 (#10), 724 (#16)
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.</td>
<td>The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.</td>
</tr>
</tbody>
</table>

Mathematics I

SE/TE:
- **Checking Your Understanding:** 390 (#1), 444 (#5-6), 450 (#2), 677 (#1-2)
- **On Your Own:** 97 (#11), 265 (#11), 369 (#4), 371 (#13), 376 (#6), 386 (#8), 393 (#11-12), 437 (#7), 453 (#9), 517 (#9), 679 (#11-12)
- **Maintain Your Skills:** 395 (#17-18)

Mathematics II

SE/TE:
- **Checking Your Understanding:** 39 (#2, 9), 45 (#9), 220 (#8), 266 (#10), 286 (#3), 296 (#5), 328 (#2), 811 (#4)
- **On Your Own:** 236 (#3-11), 245 (#13), 250 (#11-13), 589 (#4), 752 (#19)
- **Maintain Your Skills:** 288 (#20-21), 590 (#11)

Mathematics III

SE/TE:
- **Checking Your Understanding:** 121 (#2), 250 (#5), 314 (#4), 338 (#3), 360 (#6), 429 (#2), 437 (#1-2)
- **On Your Own:** 122 (#7), 361 (#10, 13), 406 (#7), 517 (#12), 580 (#10-13), 591 (#16)
- **Maintain Your Skills:** 123 (#12), 309 (#17-18), 509 (#13), 548 (#15-16)

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>MP5 Use appropriate tools strategically.</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.</td>
<td>The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.</td>
</tr>
</tbody>
</table>

| **Mathematics I** | **SE/TE:** |
| Checking Your Understanding: 333 (#2, 5-6), 590 (#1-2), 645 (#3-4) | **On Your Own:** 582 (#11), 613 (#10), 645 (#7), 654 (#8) |
| **Maintain Your Skills:** 596 (#15-16), 655 (#9) |

| **Mathematics II** | **SE/TE:** |
| Checking Your Understanding: 79 (#7), 189 (#3), 243 (#7), 440 (#1, 4), 447 (#5), 472 (#2), 474 (#7) | **On Your Own:** 442 (#10), 449 (#9) |
| **Maintain Your Skills:** 436 (#5-7), 449 (#11), 454 (#7-9) |

Mathematics III	**SE/TE:**
Checking Your Understanding: 83 (#7), 338 (#8), 400 (#1), 665 (#4-6), 743 (#1)	**On Your Own:** 102 (#7), 401 (#12), 417 (#10)
Maintain Your Skills: 305 (#16)	**For You To Do:** 398 (#5-7), 399 (#8-11), 415 (#1), 421 (#1-4), 740 (#4)

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

MP6 Attend to precision.
Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.

Mathematics I
SE/TE:
Checking Your Understanding: 72 (#1), 73 (#3-4), 204 (#5-6), 305 (#5), 421 (#4), 459 (#1)
On Your Own: 259 (#7-8), 370 (#8), 405 (#10, 12), 421 (#6)
Maintain Your Skills: 97 (#12-13), 371 (#14), 461 (#11-12)

Mathematics II
SE/TE:
Checking Your Understanding: 190 (#5, 7), 329 (#7), 419 (#3), 420 (#6), 459 (#1)
On Your Own: 182 (#8, 10), 282 (#16-17), 322 (#13), 413 (#8), 454 (#6)
Maintain Your Skills: 309 (#18), 469 (#11), 476 (#15), 547 (#8)

Mathematics III
SE/TE:
Checking Your Understanding: 110 (#2), 115 (#2-3)
On Your Own: 67 (#6), 89 (#11), 94 (#8), 99 (#9), 102 (#7), 141 (#9), 144 (#13), 196 (#8)
Maintain Your Skills: 99 (#11), 144 (#18), 154 (#6), 251 (#15), 369 (#19), 407 (#15-16)

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP7 Look for and make use of structure.</td>
<td>The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.</td>
</tr>
<tr>
<td>Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as $2 + 7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics I

SE/TE:
Checking Your Understanding: 48 (#6)
On Your Own: 26 (#14), 44 (#7-8), 49 (#9), 107 (#6), 108 (#9), 113 (#6-7), 155 (#22)
Maintain Your Skills: 22 (#14-15), 27 (#15), 32 (#9), 70 (#10-12), 76 (#14), 80 (#12), 109 (#16-17), 283 (#17), 406 (#15-160)

Mathematics II

SE/TE:
Checking Your Understanding: 266 (#11)
On Your Own: 66 (#6), 67 (#10), 116 (#11), 267 (#16)
Maintain Your Skills: 47 (#23), 67 (#13, 15), 74 (#16), 86 (#10-11), 104 (#17-20), 124 (#240)

Mathematics III

SE/TE:
Checking Your Understanding: 314 (#5)
On Your Own: 84 (#10), 136 (#21), 140 (#7), 141 (#8), 149 (#3), 162 (#4)
Maintain Your Skills: 29 (#15), 102 (#9), 151 (#9), 158 (#9), 167 (#8), 468 (#15-16)

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP8 Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation ((y - 2)/(x - 1) = 3). Noticing the regularity in the way terms cancel when expanding ((x - 1)(x + 1), (x - 1)(x^2 + x + 1),) and ((x - 1)(x^3 + x^2 + x + 1)) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.</td>
<td>The goal of the CME project is for students to engage in different activities to develop a deep understanding of mathematics. In addition to providing extensive practice in critical thinking and problem-solving skills, the problems are geared to engage students in communicating and exploring mathematics with In-Class Experiments and Project. Each investigation includes a Getting Started lesson that activates prior knowledge and explores new ideas. Mind in Action offers opportunities for communication and reflection through student-student and student-teacher dialogues.</td>
</tr>
<tr>
<td>Mathematics I SE/TE:</td>
<td></td>
</tr>
<tr>
<td>Checking Your Understanding: 43 (#1), 48 (#6), 404 (#4), 416 (#4)</td>
<td></td>
</tr>
<tr>
<td>On Your Own: 49 (#9), 405 (#9)</td>
<td></td>
</tr>
<tr>
<td>Maintain Your Skills: 278 (#13-14), 401 (#9), 412 (#16), 418 (#12-13), 423 (#17)</td>
<td></td>
</tr>
<tr>
<td>Mathematics II SE/TE:</td>
<td></td>
</tr>
<tr>
<td>Checking Your Understanding: 39 (#7), 45 (#7), 51 (#1, 3), 52 (#7), 57 (#7)</td>
<td></td>
</tr>
<tr>
<td>On Your Own: 46 (#17-18), 53 (#12, 15), 57 (#14), 58 (#15)</td>
<td></td>
</tr>
<tr>
<td>Maintain Your Skills: 47 (#21), 387 (#14), 406 (#13)</td>
<td></td>
</tr>
<tr>
<td>Mathematics III SE/TE:</td>
<td></td>
</tr>
<tr>
<td>Checking Your Understanding: 93 (#2-3, 5-7), 98 (#2-5), 133 (#4-7), 140 (#1, 3), 148 (#1)</td>
<td></td>
</tr>
<tr>
<td>On Your Own: 94 (#8-13), 134 (#9-10), 135 (#13-17), 136 (#21-22), 140 (#7), 141 (#8-9), 142 (#10-11), 143 (#12), 158 (#6, 8)</td>
<td></td>
</tr>
<tr>
<td>Maintain Your Skills: 94 (#15), 99 (#11), 136 (#23)</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition

8
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and Quantity</td>
<td></td>
</tr>
<tr>
<td>The Real Number System</td>
<td></td>
</tr>
<tr>
<td>Extend the properties of exponents to rational exponents.</td>
<td></td>
</tr>
<tr>
<td>HSN-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.</td>
<td>Mathematics II
SE/TE: 31 (#3), 44 (#4), 45 (#11), 49 (#2-3), 50, 51 (#4), 52 (#8-11), 53 (#13-14, 19), 54-58</td>
</tr>
<tr>
<td>HSN-RN.A.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.</td>
<td>Mathematics II
SE/TE: 16-20, 50 (Example 1), 53 (#14), 54-56, 57 (#9, 13), 58 (#16), 59 (#2, 5), 60 (#6)</td>
</tr>
<tr>
<td>Use properties of rational and irrational numbers.</td>
<td></td>
</tr>
<tr>
<td>HSN-RN.B.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.</td>
<td>Mathematics II
SE/TE: 24-25, 26 (#6-8), 27 (#11-12, 14-15)</td>
</tr>
<tr>
<td>Quantities*</td>
<td></td>
</tr>
<tr>
<td>Reason quantitatively and use units to solve problems.</td>
<td></td>
</tr>
<tr>
<td>HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.</td>
<td>Mathematics I
SE/TE: 174 (#3), 175, 210, 211 (#2), 231 (#1), 232 (#10-11), 257 (#1), 253-256, 257 (#1), 258-260, 261 (#16), 292-293, 343 (#1-2), 368 (#1), 369, 370 (#6-10), 488-489, 491 (#1, 3-4), 492 (#6-8), 494 (#12), 524 (#6), 525 (#8-9), 540 (#5-6), 541 (#11), 542 (#12), 549 (#10-12)</td>
</tr>
<tr>
<td></td>
<td>Mathematics II
SE/TE: 19 (#7-9), 98 (#10), 189 (#4), 190 (#5-7), 329 (#7), 331 (#13-15), 507 (#10-12), 533-535, 538-540, 541 (#7-8), 625 (#6-8), 630-634, 638 (#2), 639 (#4, 6), 645-646, 651 (#1-3, 7), 759 (#21), 763-768</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+). Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSN-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. | **Mathematics III**
| **HSN-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. | **Mathematics I**
SE/TE: 253-256, 257 (#1), 258-261, 368 (#1), 369, 370 (#6-10), 536-538, 539-542, 543-545, 549 (#10-12)
Mathematics II
SE/TE: 608-612, 613, 623-625, 626-627, 645-649
Mathematics III
SE/TE: 273-274, 275 (#6), 284 (#5), 286 (#15), 292 (#14), 293 (#1), 572-576, 762-767 |
| **HSN-Q.A.3** Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. | **Mathematics I**
Mathematics II
SE/TE: 630-634, 641, 642-644, 645
Mathematics III
SE/TE: 247-251, 572-576 |

The Complex Number System

Perform arithmetic operations with complex numbers.

| **HSN-CN.A.1** Know there is a complex number \(i \) such that \(i^2 = -1 \), and every complex number has the form \(a + bi \) with \(a \) and \(b \) real. | **Mathematics II**
SE/TE: 216, 227 (#4, 6)
Mathematics III
SE/TE: 449-450, 451-455, 491-499 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSN-CN.A.2** Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. | **Mathematics II**
SE/TE: 216-218, 219-221, 222, 227 (#5)
Mathematics III
SE/TE: 449 (#1-2, 5), 450 (#10), 451-453, 454 (#2), 455 (#16), 491-499 |
| **HSN-CN.A.3** (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers. | **Mathematics II**
SE/TE: 222-226
Mathematics III
SE/TE: 449 (#3), 451-453, 454 (#1, 4), 455 (#12-13) |

Represent complex numbers and their operations on the complex plane.

| **HSN-CN.B.4** (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number. | **Mathematics II**
SE/TE: Honors Appendix: 837-839, 841 (#16-17), 848 (#9), 861 (#1)
Polar forms not addressed.
Mathematics III
SE/TE: 451, 455 (#17), 456-457, 459 (#3), 468 (#13) |
| **HSN-CN.B.5** (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3}i)^3 = 8$ because $(-1 + \sqrt{3}i)$ has modulus 2 and argument 120°. | **Mathematics II**
SE/TE: Honors Appendix: 842-845, 847 (#1, 5), 848 (#8), 849 (#18), 861 (#2, 7-8), 865-867, 870 (#4-6, 8), 871 (#9-12), 872 (#16-17), 873-877
Mathematics III
SE/TE: 455, 461-465, 466-467, 468 (#12) |
| **HSN-CN.B.6** (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints. | **Mathematics II**
SE/TE: Honors Appendix: 846, 847 (#3-4), 848 (#11), 850-860
Mathematics III
SE/TE: 451, 453, 454 (#1-2, 4-5), 455 (#12-14), 458 (#1-2), 459 (#8), 460 (#12), 466 (#1), 467 (#10-11) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use complex numbers in polynomial identities and equations.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>HSN-CN.C.7 Solve quadratic equations with real coefficients that have complex solutions.</td>
<td>For related content, please see: SE/TE: 213 (#3), 214 (#12), 220 (#7-8), 221 (#15), Honors Appendix: 875, 876 (#1, 4-6)</td>
</tr>
<tr>
<td>HSN-CN.C.8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.</td>
<td>Mathematics II For related content, please see: SE/TE: 221 (#14)</td>
</tr>
<tr>
<td>HSN-CN.C.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.</td>
<td>Mathematics II For related content, please see: SE/TE: 221 (#14-15), Honors Appendix: Historical Perspective: 877</td>
</tr>
</tbody>
</table>

Vector & Matrix Quantities

Represent and model with vector quantities.

<p>| HSN-VM.A.1 (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, $|v|$, $||v||$, v). | Mathematics I SE/TE: Honors Appendix: 692-697, 698-699, 700-702, 703-704 |
| Mathematics II SE/TE: Honors Appendix: 842-846, 850-856, 863 (#2), 865-868 |
| Mathematics III SE/TE: Honors Appendix: 466-467 |
| HSN-VM.A.2 (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point. | Mathematics I SE/TE: Honors Appendix: 692-697, 698-699 |
| Mathematics II For related content, please see: SE/TE: Honors Appendix: 843-844, 847 (#2) |
| HSN-VM.A.3 (+) Solve problems involving velocity and other quantities that can be represented by vectors. | Mathematics I SE/TE: Honors Appendix: 692, 712-713 (Example 2), 715 (#13, 15) |
| Mathematics II For related content, please see: SE/TE: Honors Appendix: 846 |</p>
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform operations on vectors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics II [SE/TE: Honors Appendix: 842-843, 844, 847 (#1)]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSN-VM.B.4a Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.</td>
<td>Mathematics I [SE/TE: Honors Appendix: 695-697, 698-699, 700-702, 703-704]</td>
</tr>
<tr>
<td></td>
<td>Mathematics II [SE/TE: Honors Appendix: 843-844, 847 (#2)]</td>
</tr>
<tr>
<td></td>
<td>Mathematics III [SE/TE: Honors Appendix: 461, 463, 467 (#7)]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSN-VM.B.4b Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.</td>
<td>Mathematics I [SE/TE: 695-697, 698-699, 700-702, 703-704]</td>
</tr>
<tr>
<td></td>
<td>Mathematics II [For related content, please see: SE/TE: Honors Appendix: 848 (#10)]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSN-VM.B.4c Understand vector subtraction $v - w$ as $v + (-w)$, where $-w$ is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.</td>
<td>Mathematics I [SE/TE: 695-697, 698-699, 700-702, 703-704]</td>
</tr>
<tr>
<td></td>
<td>Mathematics II [SE/TE: 844, 847 (#2)]</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| HSN-VM.B.5 (+) Multiply a vector by a scalar. | Mathematics I
SE/TE: Honors Appendix: 689-691, 697, 702-703 |
| | Mathematics II
SE/TE: Honors Appendix: 844-845, 848 (#6, 9), 849, 865-869, 870-871 |
| | Mathematics III
SE/TE: Honors Appendix: 461-465 467 (#1) |
| HSN-VM.B.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as \(c(v_x, v_y) = (cv_x, cv_y) \). | Mathematics II
For related content, please see:
SE/TE: Honors Appendix: 845, 847, 848 (#6, 8) |
| | Mathematics III
SE/TE: Honors Appendix: 461-465 |
| HSN-VM.B.5b Compute the magnitude of a scalar multiple \(cv \) using \(||cv|| = |c|v \). Compute the direction of \(cv \) knowing that when \(|c|v \neq 0 \), the direction of \(cv \) is either along \(v \) (for \(c > 0 \)) or against \(v \) (for \(c < 0 \)). | Mathematics II
For related content, please see:
SE/TE: Honors Appendix: 850-859, 865-871 |
| **Perform operations on matrices and use matrices in applications.** | Mathematics I
For related content, please see:
SE/TE: Honors Appendix: 719-723, 724-727, 728 (#5-6), 729 (#7, 12-14), 730 (#15), 742-744, 745-752, 770-774 |
| HSN-VM.C.6 (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network. | Mathematics I
For related content, please see:
SE/TE: Honors Appendix: 725, 728 (#5), 729 (#14) |
| HSN-VM.C.7 (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled. | Mathematics I
For related content, please see:
SE/TE: Honors Appendix: 725, 727 (#5), 728 (#4, 6), 729 (#12-13), 730 (#15), 731-734, 735-738, 739-744, 745-752 |
| HSN-VM.C.8 (+) Add, subtract, and multiply matrices of appropriate dimensions. | Mathematics I
For related content, please see:
SE/TE: Honors Appendix: 725, 727 (#5), 728 (#4, 6), 729 (#12-13), 730 (#15), 731-734, 735-738, 739-744, 745-752 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSN-VM.C.9** (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties. | Mathematics I
SE/TE: Honors Appendix: 739-740, 745 (#1, 3), 746 (#6), 747-751, 752 (#35-36), 761-764 |
| **HSN-VM.C.10** (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse. | Mathematics I
SE/TE: Honors Appendix: 745 (#3), 755-758, 759-760, 762-768 |
| **HSN-VM.C.11** (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors. | Mathematics I
SE/TE: Honors Appendix: 770 (#2-3), 771-772, 773 (#10), 774, 775-786 |
| **HSN-VM.C.12** (+) Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area. | Mathematics I
SE/TE: Honors Appendix: 775-786 |

Algebra

Seeing Structure in Expressions

Interpret the structure of expressions.

| **HSA-SSE.A.1** Interpret expressions that represent a quantity in terms of its context.* | Mathematics I
SE/TE: 93-97, 98-99, 100, 101 (#7), 102 (#11), 112, 113 (#8), 114 (#10), 279-281, 282 (#7-8, 10), 283 (#11, 13, 15)
Mathematics II
Mathematics III

* indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher's Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSA-SSE.A.1a** Interpret parts of an expression, such as terms, factors, and coefficients. | Mathematics I
For related content, please see:
SE/TE: 104 |
| **HSA-SSE.A.1b** Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret \(P(1+r)^n\) as the product of \(P\) and a factor not depending on \(P\). | Mathematics I
SE/TE: 103-105, 108 (#9-10), 113 (#5-7), 279-283 |
| **HSA-SSE.A.2** Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4\) as \((x^2)^2 - (y^2)^2\), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2)\). | Mathematics I
SE/TE: 103-105, 107 (#4), 172-173, 174-177, 279-281, 282 (#8, 10), 283 (#11) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write expressions in equivalent forms to solve problems.</td>
<td></td>
</tr>
<tr>
<td>HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*</td>
<td>Mathematics I
SE/TE: 113 (#5-7), 411 (#4), 412 (#10, 12-13), 458-459, 460-461</td>
</tr>
<tr>
<td>HSA-SSE.B.3a Factor a quadratic expression to reveal the zeros of the function it defines.</td>
<td>Mathematics II
SE/TE: 75-78, 79 (#2-3, 5, 7), 82, 83 (#3e), 117-118, 123 (#13) 124 (#23), 126-127, 130 (#3), 133, 138 (#1), 139 (#5), 141 (#14, 19), 177-182</td>
</tr>
<tr>
<td>HSA-SSE.B.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.</td>
<td>Mathematics II
SE/TE: 133-138, 139 (#5), 141 (#14, 20), 177-182, 185-186, 189, 190</td>
</tr>
<tr>
<td>HSA-SSE.B.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.</td>
<td>Mathematics I
SE/TE: 456-461, 464</td>
</tr>
<tr>
<td>Mathematics II
SE/TE: 314 (#13), 316-318, 321 (#5, 9), 322 (#16), 323 (#21), 326-327, 329 (#7), 331 (#14), 333 (#5)</td>
<td>Mathematics III
SE/TE: 575, 576 (#7-8), 598 (#13), 605 (#7), 607 (#13-14)</td>
</tr>
<tr>
<td>Mathematics III
For related content, please see:
SE/TE: 41-46, 47 (#6), 51-54</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-SSE.B.4</td>
<td>Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.</td>
<td>Mathematics II
For related content, please see:
SE/TE: 204 (#14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics III
For related content, please see:
SE/TE: 91-94, 139, 143 (#12), 144 (#13-15), 572-576</td>
</tr>
</tbody>
</table>

Arithmetic with Polynomials & Rational Expressions

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-APR.A.1</td>
<td>Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.</td>
<td>Mathematics II
SE/TE: 92-97, 105-109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics III
SE/TE: 6-8, 9 (#9), 11 (#10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-APR.B.2</td>
<td>Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.</td>
<td>Mathematics III
SE/TE: 35-40, 523-525, 529-536, 537-542</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-APR.B.3</td>
<td>Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.</td>
<td>Mathematics II
SE/TE: 75-80, 117-118, 123 (#13), 124 (#23), 125-128, 130 (#3), 133, 138 (#1), 139 (#5), 141 (#14, 19), 159, 160 (#5), 161 (#27), 171 (#11), 193, 195, 197 (#1), 199 (#8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-APR.C.4</td>
<td>Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.</td>
<td>Mathematics II
SE/TE: 67 (#14), 99-101, 102 (#2), 103 (#5-12, 14), 203 (#4), 204 (#9, 12), 344 (#3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics III
SE/TE: 46 (#13-14), 449 (#7), 455 (#15)</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSA-APR.C.5** (+) Know and apply the Binomial Theorem for the expansion of \((x + y)^n\) in powers of \(x\) and \(y\) for a positive integer \(n\), where \(x\) and \(y\) are any numbers, with coefficients determined for example by Pascal's Triangle. | **Mathematics II**
SE/TE: 67 (#13, 15), 98 (#11-13), 374-375, 377 (#10), 379 (#4), 411, 413 (#6, 11)
Mathematics III
SE/TE: 159-163, 164-167, 168, 247-251, 277-286 |
| **Rewrite rational expressions.**
HSA-APR.D.6 Rewrite simple rational expressions in different forms; write \(\frac{a(x)}{b(x)}\) in the form \(q(x) + \frac{r(x)}{b(x)}\), where \(a(x), b(x), q(x),\) and \(r(x)\) are polynomials with the degree of \(r(x)\) less than the degree of \(b(x)\), using inspection, long division, or, for the more complicated examples, a computer algebra system. | **Mathematics III**
SE/TE: 40 (#16-17), 69-70, 71-72, 525 (#3-4), 545-548, 549-557, 560, 563-565 |
| **HSA-APR.D.7** (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. | **Mathematics III**
SE/TE: 69-70, 71-72, 549-557 |
| **Creating Equations★**
Create equations that describe numbers or relationships.
HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems.
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. | **Mathematics I**
SE/TE: 136 (#9), 141 (#10), 159 (#1), 162-166, 167-171, 321 (#1-2), 322 (#8), 329, 331, 336 (#15), 366-370, 371 (#11, 13), 450 (#1-2), 451 (#3), 452 (#5, 8), 453 (#9), 454 (#11), 456 (#7), 525 (#10)
Mathematics II
SE/TE: 98 (#10), 123 (#12), 162-165, 175, 176 (#4), 182 (#8, 10), 189 (#4), 190 (#5-7), 322 (#13), 329 (#7), 331 (#13-15)
Mathematics III
SE/TE: 11 (#10) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSA-CED.A.2** Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. | **Mathematics I**
SE/TE: 172-177, 178, 195-199, 200-207, 222 (#4-5), 240 (#16), 241 (#3-4)
Mathematics II
SE/TE: 175, 176 (#4)
Mathematics III
SE/TE: 16 (#14-15), 523-526, 527 (#13-14), 528 (#20), 537-542, 662-667 |
| **HSA-CED.A.3** Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. *For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.* | **Mathematics I**
SE/TE: 148-152, 172-177, 200-202, 203, 204 (#5-6), 265 (#11), 289-291, 292 (#1-2), 293 (#4-10), 304 (#1, 3), 305 (#4, 5), 306 (#9-10), 307 (#13), 311 (#10-12), 321, 322 (#8), 323 (#10-12), 329-332, 333 (#4-6), 334 (#10-11), 335
Mathematics II
SE/TE: 73 (#9-12), 74 (#13), 79 (#7), 84 (#7-8), 175, 176 (#4), 182 (#8, 10), 160 (#1-8, 12-17), 161 (#19) |
| **HSA-CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. *For example, rearrange Ohm’s law V = IR to highlight resistance R.* | **Mathematics I**
SE/TE: 132 (#1), 172-177, 288 (#40-49)
Mathematics II
For related content, please see:
SE/TE: 67 (#7), 73 (#9-12), 74 (#13), 79 (#1), 80 (#8), 84 (#7-8)
Mathematics III
SE/TE: Honors Appendix: 810-815 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasoning with Equations & Inequalities</td>
<td></td>
</tr>
<tr>
<td>Understand solving equations as a process of reasoning and explain the reasoning.</td>
<td></td>
</tr>
</tbody>
</table>
| **HSA-REI.A.1** Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. | **Mathematics I**
SE/TE: 117-119, 120-125, 126-131, 132-133, 135-137, 138-142, 143-147, 148-152, 153-156, 157
Mathematics II
For related content, please see:
SE/TE: 79 (#1-2), 80 (#8-9), 87 (#3), 123 (#13, 17), 130 (#2-3)
Mathematics III
SE/TE: 408-413 |
| **HSA-REI.A.2** Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. | **Mathematics II**
For related content, please see:
SE/TE: 31 (#4-5), 32 (#7)
Mathematics III
SE/TE: 53 (#4), 67 (#6), 545-546, 547 (#9-10), 548 (#12-13), 736 (#6), 737 (#10), 743 (#2), 744 (#10) |
| Solve equations and inequalities in one variable. | |
| **HSA-REI.B.3** Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. | **Mathematics I**
Mathematics II
SE/TE: 79 (#1-2), 80 (#8-9) |
| **HSA-REI.B.4** Solve quadratic equations in one variable. | **Mathematics I**
For related content, please see:
SE/TE: 322 (#8), 327 (#4)
Mathematics II
SE/TE: 135 (#5), 138 (#1), 139 (#5), 140 (#12), 141 (#14, 19), 142 (#21), 143 (#5), 153-154, 155-161, 162-163, 166 (#5), 203, 221 (#15)
Mathematics III
SE/TE: 51-54, 410-413 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-REI.B.4a Use the method of completing the square to transform any quadratic equation in (x) into an equation of the form ((x - p)^2 = q) that has the same solutions. Derive the quadratic formula from this form.</td>
<td>Mathematics II
 SE/TE: 133-141, 142 (#21-22), 153, 160 (#1-8, 11), 161 (#27)</td>
</tr>
<tr>
<td>HSA-REI.B.4b Solve quadratic equations by inspection (e.g., for (x^2 = 49)), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as (a \pm bi) for real numbers (a) and (b).</td>
<td>Mathematics II
 SE/TE: 123 (#13), 124 (#23), 130 (#3), 132 (#13), 133-141, 142 (#22), 153, 155-161, 166 (#5), 205-206, 207, 208 (#13-14), 214 (#12), 205 (#13-15), 220 (#11)
 Mathematics III
 For related content, please see:
 SE/TE: 51-54, 449-450</td>
</tr>
<tr>
<td>Solve systems of equations.</td>
<td>Mathematics I
 For related content, please see:
 SE/TE: 300-305, 307 (#11, 13), 313-318, 319</td>
</tr>
<tr>
<td>HSA-REI.C.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.</td>
<td>Mathematics I
 SE/TE: 216 (#1-3), 217 (#7), 297, 299 (#9), 300-305, 307 (#11, 13), 311 (#12), 312 (#13), 313-318, 319</td>
</tr>
<tr>
<td>HSA-REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.</td>
<td>Mathematics I
 SE/TE: Honors Appendix: 881-883, 884-888, 889-897, 898 (#27), 905 (#1-2)</td>
</tr>
<tr>
<td>HSA-REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line (y = -3x) and the circle (x^2 + y^2 = 3).</td>
<td>Mathematics I
 For related content, please see:
 SE/TE: 217 (#5-6), 218 (#9), 321 (#4), 324-325, 328 (#9), 341 (Example 2)</td>
</tr>
<tr>
<td>HSA-REI.C.8 (+) Represent a system of linear equations as a single matrix equation in a vector variable.</td>
<td>Mathematics I
 SE/TE: Honors Appendix: 744, 746 (#4), 749 (#22, 23), 753 (#8), 756-757, 758 (#1-3)
 Mathematics II
 SE/TE: Honors Appendix: 889-897, 898 (#27), 899-904</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-REI.C.9 (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).</td>
<td>Mathematics I
<code>SE/TE:</code> Honors Appendix: 756-757, 758 (#1), 759 (#9)</td>
</tr>
<tr>
<td>Mathematics II
<code>SE/TE:</code> Honors Appendix: 899-904</td>
<td></td>
</tr>
<tr>
<td>HSA-REI.D.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).</td>
<td>Mathematics II
<code>SE/TE:</code> 178, 182 (#13), 184-186, 189 (#1, 3), 190 (#9), 191 (#11-12), 280 (#1-2), 299-307, 308 (#11), 316-323, 324, 330 (#12), 336 (#16), 337 (#18, 20-22), 338-339, 342-343, 345 (#8), 347-348, 350-351, 352 (#1-3), 353 (#7-10), 355 (#16), 356-360, 361 (#1-3), 362 (#5, 9-10), 364 (#17), 811 (#1, 3), Honors Appendix: 941-946, 947-951, 968, 969 (#4), 970 (#11, 13), 971-976, 977, 978 (#5-6), 979 (#10-11), 980-981, 985 (#2), 986 (#3-4, 6),</td>
</tr>
<tr>
<td>Mathematics III
<code>SE/TE:</code> 13-16, 17-21, 25-26, 27 (#1-2), 28 (#6-9), 507-508, 509 (#11, 13), 545-546, 548 (#15-16), 549, 555 (#6, 8), 557 (#19, 22), 592-597, 642-646</td>
<td></td>
</tr>
<tr>
<td>HSA-REI.D.11 Explain why the x-coordinates of the points where the graphs of the equations (y = f(x)) and (y = g(x)) intersect are the solutions of the equation (f(x) = g(x)); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where (f(x)) and/or (g(x)) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*</td>
<td>Mathematics I
<code>SE/TE:</code> 216 (#1), 217 (#6), 218 (#11), 219 (#3), 279 (#16), 300, 304 (#2), 305 (#5), 319 (#3), 321, 323 (#10, 13), 324-325, 328 (#9), 331-332, 333 (#3, 5-6), 334 (#10), 343 (#7), 393 (#12)</td>
</tr>
<tr>
<td>Mathematics II
<code>SE/TE:</code> 154 (#16), 213 (#2), 317 (#4-5), 807 (#11-12),</td>
<td></td>
</tr>
<tr>
<td>Mathematics III
<code>SE/TE:</code> 17-21, 25-27, 28 (#6-9), 54 (#8), 520-528, 537-538, 541 (#1-2), 542 (#12), 592-599, 642-647</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.</td>
<td>Mathematics I
SE/TE: 337-341, 342 (#1-3), 344 (#8, 12), 345-350, 351-354</td>
</tr>
</tbody>
</table>

Functions

Interpreting Functions

Understand the concept of a function and use function notation.

| **HSF-IF.A.1** Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \). | **Mathematics I**
SE/TE: 363-365, 372-377, 378-382, 383-384, 385 (#2, 4), 386 (#7), 388
Mathematics II
SE/TE: 274-282, 318-320
Mathematics III
SE/TE: 77, 589-591 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher's Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Standard</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-IF.A.3** Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \). | Mathematics I
Mathematics II
SE/TE: 35 (#4-5), 45 (#7), 47 (#21), 48-51, 52 (#7), 53 (#13-14), 57 (#7, 14), 327, 387, 406 (#13)
Mathematics III
SE/TE: 100, 127-129, 130-136, 137-138, 140-141, 144, 576 |

Interpret functions that arise in applications in terms of the context.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-IF.B.4** For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* | Mathematics I
SE/TE: 231 (#6), 285 (#4-7), 383-386, 387-395, 428 (#10), 429-430, 440-446, 462-466, 628 (#11-14)
Mathematics II
SE/TE: 177, 179-181, 181 (#1-2), 182 (#6-7, 10-12), 184-188, 189-191, 192-197, 197-200, 201, 316-320, 335 (#1-5), 344 (#4, 6), 345, 353 (#6), Honors Appendix: 923, 939 (#6), 940-946, 947-951
Mathematics III

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-IF.B.5** Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function. | Mathematics I
SE/TE: 428 (#10), 437 (#7), 438 (#10), 452 (#8), 454 (#11), 466 (#7)
Mathematics II
SE/TE: 177-181, 182 (#8, 10), 280 (#1-2, 6), 281 (#9, 11-12), 302-303, 347-348, 352 (#1)
Mathematics III
| **HSF-IF.B.6** Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. | Mathematics I
SE/TE: 253-261, 529-531, 535 (#11)
Mathematics II
For related content, please see:
SE/TE: 246-251, 252-258, 342-343
Mathematics III
SE/TE: 520-522, 524 (#1), 526, 537-540, 649-652, 655 (#12) |
| **Analyze functions using different representations.**
HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. | Mathematics I
Mathematics II
For related content, please see:

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Continued) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*</td>
<td>Mathematics III</td>
</tr>
<tr>
<td>HSF-IF.C.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.</td>
<td>Mathematics I</td>
</tr>
<tr>
<td>HSF-IF.C.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>SE/TE: 183-188, 189-191, 337 (#16), 345 (#8), 347-351, 353 (#7), 354 (#12), 356-357, 361 (#1-2, 4), 362 (#9), 364 (#18)</td>
<td></td>
</tr>
<tr>
<td>HSF-IF.C.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>For related content, please see: SE/TE: 177-181, 183-188, 189 (#3), 190 (#9), 192-197, 199 (#8, 10), 342-343, 345 (#8, 12), 347-351, 353 (#7), 354 (#12), 356-357, 361 (#1-2, 4), 362 (#9), 364 (#18)</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher's Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Continued)</td>
<td></td>
</tr>
<tr>
<td>HSF-IF.C.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.</td>
<td>Mathematics III SE/TE: 13, 14 (#12), 16 (#14-18), 25, 27 (#1-2), 28 (#6-9), 507-508, 509 (#10-11, 13), 510-514, 517 (#14), 521-522, 525 (#2-4), 527 (#10-12, 14), 528 (#15, 17-18)536 (#17), 537-538</td>
</tr>
<tr>
<td>HSF-IF.C.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.</td>
<td>Mathematics II SE/TE: 337 (#21-22)</td>
</tr>
<tr>
<td>HSF-IF.C.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.</td>
<td>Mathematics I SE/TE: 462-466</td>
</tr>
<tr>
<td></td>
<td>Mathematics II SE/TE: 316-320, 321 (#8), 323 (#22), 335 (#10), 337 (#20), 339</td>
</tr>
<tr>
<td>HSF-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.</td>
<td>Mathematics I SE/TE: 284-285, 286 (#2-3, 5), 363-365, 391 (#4-5), 392 (#6), 394 (#14-15), 465 (#1-4), 466 (#7)</td>
</tr>
<tr>
<td></td>
<td>Mathematics II SE/TE: 65, 67, 74 (#14), 279, 307 (#6), 308 (#12-13)</td>
</tr>
<tr>
<td></td>
<td>Mathematics III SE/TE: 79-81, 82, 84 (#11), 507-508, 509, 510-511, 514, 516 (#6), 529-533, 534 (#2-4, 6), 535, 536 (#13), 608 (#1-2)</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-IF.C.8a** Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. | **Mathematics II**
SE/TE: 133 (#1), 136 (#9), 139 (#5), 141 (#14), 177-181, 182 (#6-12), 183-188, 189 (#1-2, 4), 190 (#5-6, 9), 191 (#12), 193 (#1-3), 197 (#4) |
| **HSF-IF.C.8b** Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as \(y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, \) and classify them as representing exponential growth or decay. | **Mathematics I**
SE/TE: 451 (#4), 452 (#7-8), 453 (#9), 454 (#11), 456-459, 460-461, 462-464, 465-466
Mathematics II
SE/TE: 324-327, 328 (#1), 329 (#7), 331 (#13-15)
Mathematics III
SE/TE: 600-603, 604, 605 (#7), 607 (#13-15), 608-610, 611-613, 614 (#17-19), 617-619, 620 (#10, 14), 621 (#16-17), |
| **HSF-IF.C.9** Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. | **Mathematics I**
SE/TE: 385 (#4), 389, 390 (#1), 391 (#2-3), 392 (#6-7), 393 (#12), 394 (#13-15), 443 (#2), 445 (#8, 10-11), 446 (#14-15)
Mathematics II
SE/TE: 177-179, 181 (#1-2), 182 (#11-12), 183-188, 189-191, 192-200, 238-241, 242-243
Mathematics III
For related content, please see:
SE/TE: 79-81, 82, 84 (#11), 416 (#6), 417 (#14) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Functions</td>
<td></td>
</tr>
</tbody>
</table>
| **HSF-BF.A.1** Write a function that describes a relationship between two quantities.* | **Mathematics I**
Mathematics II
Mathematics III
SE/TE: 127, 129 (#5, 7), 569-571, 572-57576 (#7-8), 577-578, 579 (#1-4), 580 (#7, 9), 581, 598 (#13), 605 (#7), 607 (#13-15), 612 (#7-8), 613 (#12, 16) |
| **HSF-BF.A.1a** Determine an explicit expression, a recursive process, or steps for calculation from a context. | **Mathematics I**
Mathematics II
SE/TE: 235-237, 238-239, 241, 244 (#11-12), 322 (#13), 329 (#7), 331 (#13-15)
Mathematics III
SE/TE: 127, 129 (#5, 7), 176, 184-187, 188 (#4-5), 189 (#7), 196 (#5-6, 11), 569-571, 572-576, 598 (#13), 605 (#7), 607 (#13-15), 612 (#7-8), 613 (#12, 16) |
| **HSF-BF.A.1b** Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. | **Mathematics I**
For related content, please see:
SE/TE: 378-382
Mathematics III
For related content, please see:
SE/TE: 27-29 |
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Standard</th>
<th>Integrated CME Project @2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF-BF.A.1c (+) Compose functions. For example, if (T(y)) is the temperature in the atmosphere as a function of height, and (h(t)) is the height of a weather balloon as a function of time, then (T(h(t))) is the temperature at the location of the weather balloon as a function of time.</td>
<td>Mathematics I
For related content, please see:
SE/TE: 378-382
Mathematics II
SE/TE: 271-273, 283-288
Mathematics III
For related content, please see:
SE/TE: 678-679</td>
</tr>
<tr>
<td>HSF-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*</td>
<td>Mathematics I
SE/TE: 432-435, 436, 438 (#11), 439, 440-442, 443-446, 453 (#9), 454 (#10)
Mathematics II
SE/TE: 35 (#4-5), 47 (#21), 48-53, 57 (#7, 14), 59 (#4), 242 (#2), 243 (#7), 244 (#11), 256-258
Mathematics III
For related content, please see:
SE/TE: 78-81, 83 (#7-8), 84, 85 (#13), 127-129, 130-131, 133-136, 137-138, 140-144</td>
</tr>
<tr>
<td>HSF-BF.B.3 Identify the effect on the graph of replacing (f(x)) by (f(x) + k), (k f(x)), (f(kx)), and (f(x + k)) for specific values of (k) (both positive and negative); find the value of (k) given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.</td>
<td>Mathematics I
SE/TE: 187, 188 (#9-12), 219 (#2-3), 222 (#4-6), 225-230, 232 (#12), 233 (#17-18), 234-238, 239 (#1-5, 7), 240 (#14, 16), 241 (#3), 382 (#12), 633-634, 635 (#3), 636 (#6)
Mathematics II
SE/TE: 335, 337 (#17, 20, 22), 344-345, 347-351, 352 (#1), 353 (#5, 9), 356-364
Mathematics III
For related content, please see:
SE/TE: 338 (#11-12), 406 (#4, 7), 407 (#10, 12), 421, 422 (#11), 423 (#12), 428, 429 (#7), 430-431, 435-436, 437, 438 (#5-8), 439, 440 (#18), 509 (#10-11, 13), 525-526, 599 (#22), 608 (#1), 613 (#13)</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF-BF.B.4 Find inverse functions.</td>
<td>Mathematics I</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 227, 232 (#12)</td>
</tr>
<tr>
<td></td>
<td>Mathematics II</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 293-294, 295 (#1), 297 (#9), 298 (#14)</td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 616-617, 618 (#4), 623 (#5, 7), 680-681, 685 (#15), Honors Appendix: 775 (#1, 3-4), 787-790</td>
</tr>
<tr>
<td>HSF-BF.B.4a Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) = 2 x^3 or f(x) = (x+1)/(x−1) for x ≠ 1.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 293-294, 295 (#1), 297 (#9), 298 (#14)</td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>For related content, please see:</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 617, 618 (#4), 623 (#5, 7), 675-679, 787-793</td>
</tr>
<tr>
<td>HSF-BF.B.4b (+) Verify by composition that one function is the inverse of another.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td></td>
<td>For related content, please see:</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 284, 293, 295-298</td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 675-679, 787-793</td>
</tr>
<tr>
<td>HSF-BF.B.4c (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 296 (#2, 5), 297 (#10)</td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 616-617, 675-679, 680-682, 788, 789 (#3)</td>
</tr>
<tr>
<td>HSF-BF.B.4d (+) Produce an invertible function from a non-invertible function by restricting the domain.</td>
<td>Mathematics II</td>
</tr>
<tr>
<td></td>
<td>For related content, please see:</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 296 (#4)</td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 789-790, 793 (#10)</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-BF.B.5** (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents. | Mathematics III
SE/TE: 627-630, 631 (#8), 633-637, 638 (#7-11), 644-646, 674-679 |

Linear, Quadratic, & Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

| **HSF-LE.A.1** Distinguish between situations that can be modeled with linear functions and with exponential functions. | Mathematics I
SE/TE: 428 (#10), 429 (#12), 437 (#7), 438 (#10-11), 443-444, 445 (#10-11), 452 (#8), 460 (#3-4, 6-7), 461 (#8, 11-12), 462-464, 466 (#7) |
| | Mathematics II
SE/TE: 322 (#13), 329 (#7), 331 (#13-15) |
| | Mathematics III
SE/TE: 309 (#17-18), 598 (#13), 602, 605 (#7), 607 (#13-15), 612 (#7-8), 613 (#12, 16), 614 (#19), 621 (#16-17) |

| **HSF-LE.A.1a** Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. | Mathematics I
| | Mathematics II
SE/TE: 245 (#15), 246-247, 249 (#3), 250 (#9-10, 12), 251 (#18), 260, 313, 314 (#15), 315 (#16), 323 (#18), 329 (#10) |
| | Mathematics III
For related content, please see:
SE/TE: 589 |

| **HSF-LE.A.1b** Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. | Mathematics I
SE/TE: 428 (#10), 429 (#12), 437 (#7), 445 (#11), 447-449, 451 (#4), 452 (#8) |
| | Mathematics II
For related content, please see:
SE/TE: 245 (#15), 246-251, 252-258 |
| | Mathematics III
SE/TE: 598 (#13), 602, 605 (#7), 607 (#13-15), 612 (#7-8), 613 (#12, 16), 614 (#19), 621 (#16-17) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF-LE.A.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.</td>
<td>Mathematics I
SE/TE: 447-454, 456-458, 459 (#1), 460 (#3-4, 6-7), 461 (#8, 11-12), 462-464, 466 (#7)</td>
</tr>
<tr>
<td>HSF-LE.A.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).</td>
<td>Mathematics I
SE/TE: 279-281, 282 (#8, 10), 283 (#11, 13, 15, 18), 286 (#1), 287 (#8-27), 288 (#50), 292 (#1-2), 294 (#2), 459 (#1), 460 (#4), 466 (#7)</td>
</tr>
<tr>
<td>HSF-LE.A.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.</td>
<td>Mathematics I
For related content, please see:
SE/TE: 462-463, 464 (#3-4), 465 (#1-4), 466 (#7)</td>
</tr>
<tr>
<td>HSF-LE.A.4 For exponential models, express as a logarithm the solution to (ab^{ct} = d) where (a), (c), and (d) are numbers and the base (b) is 2, 10, or (e); evaluate the logarithm using technology.</td>
<td>Mathematics III
SE/TE: 627-630, 632 (#16-17, 21-22), 633-640, 668-673</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret expressions for functions in terms of the situation they model.</td>
</tr>
<tr>
<td>HSF-LE.B.5 Interpret the parameters in a linear or exponential function in terms of a context.</td>
</tr>
<tr>
<td>Mathematics I
SE/TE: 289-293, 300, 304 (#1, 3), 305 (#5), 306 (#9-10), 428 (#10), 429 (#12), 437 (#7), 438 (#10-11), 445 (#10-11), 452 (#8), 465-459, 460 (#3-4, 6-7), 461 (#8, 11-12), 462-464, 466 (#7)</td>
</tr>
<tr>
<td>Mathematics II
SE/TE: 322 (#13), 329 (#7), 331 (#13-15)</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 598 (#13), 602, 605 (#7), 607 (#13-15), 612 (#7-8), 613 (#12, 16), 614 (#19), 621 (#16-17)</td>
</tr>
</tbody>
</table>

Trigonometric Functions

| Mathematics I
SE/TE: 657, 658 (#1-2), 659 (#8) |
| Mathematics II
SE/TE: Honors Appendix: 916-919, 921 (#10), 922-925 |

- ★ indicates modeling standards
- (+) Standards needed for advanced courses such as calculus
- SE = Student Edition
- TE = Teacher's Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSF-TF.A.4** (+) | Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. | Mathematics II
For related content, please see:
SE/TE: Honors Appendix: 923, 928-932, 941-942, 945 |

| **HSF-TF.B.5** | Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.* | Mathematics III
For related content, please see:
SE/TE: 333 (#6, 8), 335-336, 422, 533-536, 437 (#2), 438 (#6, 9), 439 (#12), 440 (#18), 441 (#1, 3) |

| **HSF-TF.B.6** (+) | Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed. | Mathematics III
SE/TE: Honors Appendix: 785 (#4) |

| **HSF-TF.B.7** (+) | Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.* | Mathematics II
SE/TE: 926-932, 933-936, 941-946, 947-951
Mathematics III
For related content, please see:
SE/TE: 324 (#6), 327-330, 408-412, 421, 432-440, Honors Appendix: 787-793 |

| **HSF-TF.C.8** | Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle. | Mathematics II
For related content, please see:
SE/TE: 928
Mathematics III

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF-TF.C.9 (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.</td>
<td>Mathematics II
SE/TE: 952-958</td>
</tr>
<tr>
<td></td>
<td>Mathematics III
SE/TE: 327-328, 329 (#3, 6, 8-9), Honors Appendix: 804-909</td>
</tr>
</tbody>
</table>

Geometry

Congruence

Experiment with transformations in the plane

HSG-CO.A.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	**Mathematics I** SE/TE: 35, 36 (#5-6, 8-9), 279-280, 587-588, 589-591, 607-608, 608 (#1), 609 (#7), 607, 659 (#2), 660 (#6-7), 664 (#6-7), 669 (#1-3), 669 (Theorem 8.4), 674 (Theorem 8.5)
For related content, please see:	**Mathematics II** SE/TE: 339-341, 362, 473, 650, 802-803
	Mathematics III SE/TE: 397, 398 (#3), 699-700, 701 (#5)

| HSG-CO.A.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch). | **Mathematics I**
For related content, please see:
SE/TE: 189-194, 621-623, 624-630, 631-638, 639-647, 659, 660 (#6-7) |
| **Mathematics II**
SE/TE: 536-543, 608-612 |

| HSG-CO.A.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. | **Mathematics I**
For related content, please see:
SE/TE: 639-647 |
| HSG-CO.A.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. | **Mathematics I**
For related content, please see:
SE/TE: 621-623, 624-627, 631-638, 639 (#9-12), 640-643, 644-646 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSG-CO.A.5** Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. | Mathematics I For related content, please see:

Understand congruence in terms of rigid motions

| **HSG-CO.B.6** Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. | Mathematics I SE/TE: 648-652, 653-655 |
| **HSG-CO.B.7** Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. | Mathematics I SE/TE: 616 (#1-4), 617 (#8-12), 648-652, 653-655
Mathematics II SE/TE: 428-433 |
| **HSG-CO.B.8** Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. | Mathematics I For related content, please see:
SE/TE: 616 (#1-4), 617 (#5-12), 648-652, 653-655
Mathematics II SE/TE: 428-433 |

Prove geometric theorems

| **HSG-CO.C.9** Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints. | Mathematics II SE/TE: 455-461, 462-468, 469-470, 472 (#1-2), 475 (#14), 499-504 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSG-CO.C.10** Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. | **Mathematics I** For related content, please see:
SE/TE: 576 (Conjecture 7.1), 576 (#10-13), 614-616
Mathematics II For related content, please see:
SE/TE: 430 (#3-4), 433 (#16), 438, 471, 484 (#5), 485 (#6), 490 (#1-2), 491, 492 (#2), 493 (#4), 499-504, 521-523, 722-727 |
| **HSG-CO.C.11** Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. | **Mathematics I** For related content, please see:
SE/TE: 618 (#17), 623 (#7), 666 (#6), 683 (#13)
Mathematics II
SE/TE: 433 (#17), 486 (#9), 515-520, 521-523 |
| **Make geometric constructions** | **Mathematics I**
SE/TE: 575-576, 577-580, 580 (#1), 581-583, 584-585, 587-588, 589-591, 593-594, 596 (#10)
Mathematics II
SE/TE: 429 (#4-8), 430 (#1-2), 439 (#8-9), 440 (#1-4), 442 (#10) |
| **HSG-CO.D.12** Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. | **Mathematics I**
SE/TE: 592-593, 596 (#14), 597 (#1)
Mathematics II
SE/TE: 635-639 |
| **HSG-CO.D.13** Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. | **Mathematics I**
SE/TE: 575-576, 577-580, 580 (#1), 581-583, 584-585, 587-588, 589-591, 593-594, 596 (#10)
Mathematics II
SE/TE: 429 (#4-8), 430 (#1-2), 439 (#8-9), 440 (#1-4), 442 (#10) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity, Right Triangles, & Trigonometry</td>
<td></td>
</tr>
<tr>
<td>Understand similarity in terms of similarity transformations</td>
<td></td>
</tr>
<tr>
<td>HSG-SRT.A.1 Verify experimentally the properties of dilations given by a center and a scale factor:</td>
<td>Mathematics I SE/TE: 561-564, 565-571</td>
</tr>
<tr>
<td></td>
<td>Mathematics II For related content, please see: SE/TE: 561-564, 565-571</td>
</tr>
<tr>
<td>HSG-SRT.A.1a A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.</td>
<td>Mathematics I SE/TE: 565-571</td>
</tr>
<tr>
<td>HSG-SRT.A.1b The dilation of a line segment is longer or shorter in the ratio given by the scale factor.</td>
<td>Mathematics II For related content, please see: SE/TE: 536-543, 565-571</td>
</tr>
<tr>
<td>HSG-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.</td>
<td>Mathematics II SE/TE: 547, 549-556, 561-562, 565-571, 594, 595-596, 597 (#1), 598-599</td>
</tr>
<tr>
<td>HSG-SRT.A.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.</td>
<td>Mathematics II SE/TE: 600-604, 605-606</td>
</tr>
<tr>
<td>Prove theorems involving similarity</td>
<td></td>
</tr>
<tr>
<td>HSG-SRT.B.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.</td>
<td>Mathematics II SE/TE: 580-581, 583, 584 (#1), 587-590, 716-721</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSG-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.</td>
<td>Mathematics I
SE/TE: 605-606, 614-616, 616 (#1-3), 617-618, 619 (#3-4), 648-652, 654 (#8), 655 (#9-11)</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 300-303, 304-305</td>
<td>Mathematics III
SE/TE: 304-305, Honors Appendix: 794, 797 (#5), 799 (#5)</td>
</tr>
<tr>
<td>Define trigonometric ratios and solve problems involving right triangles</td>
<td></td>
</tr>
<tr>
<td>HSG-SRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.</td>
<td>Mathematics II
SE/TE: 746-752, Honors Appendix: 909-910, 911 (#8-10)</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 300-303, 304-305</td>
<td>Mathematics III
SE/TE: 304-305, Honors Appendix: 794, 797 (#5), 799 (#5)</td>
</tr>
<tr>
<td>HSG-SRT.C.7 Explain and use the relationship between the sine and cosine of complementary angles.</td>
<td>Mathematics II
SE/TE: 746-752, Honors Appendix: 907-912</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 300-303, 304-305</td>
<td>Mathematics III
SE/TE: 300-305, 411</td>
</tr>
<tr>
<td>HSG-SRT.C.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*</td>
<td>Mathematics II
SE/TE: 741-745, 746-752, 753-759, Honors Appendix: 907-912</td>
</tr>
<tr>
<td>Apply trigonometry to general triangles</td>
<td></td>
</tr>
<tr>
<td>HSG-SRT.D.9 (+) Derive the formula (A = \frac{1}{2} ab \sin(C)) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.</td>
<td>Mathematics II
For related content, please see:
SE/TE: 753-759</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

<table>
<thead>
<tr>
<th>Common Core State Standard</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSG-SRT.D.10** (+) Prove the Laws of Sines and Cosines and use them to solve problems. | **Mathematics III**
SE/TE: 363-366, 366 (#1-3), 367-369, 370-376, 377-378, 379 (#18, 20) |
| **HSG-SRT.D.11** (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces). | **Mathematics III**
SE/TE: 368 (#8-9, 13), 369 (#14-18, 19), 378 (#9, 15-17), 379 (#20) |

Circles

Understand and apply theorems about circles

<table>
<thead>
<tr>
<th>Common Core State Standard</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSG-C.A.1** Prove that all circles are similar. | **Mathematics II**
For related content, please see:
SE/TE: 654 |
| **HSG-C.A.2** Identify and describe relationships among inscribed angles, radii, and chords. *Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.* | **Mathematics II**
SE/TE: 441, 663-665, 666-668, 669 (#1), 674-679, 686-692 |
| **HSG-C.A.3** Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. | **Mathematics II**
SE/TE: 665, 680-682, 683 (#3), 684 (#4-5), 685 (#11)
Mathematics III
For related content, please see:
SE/TE: 397 |
| **HSG-C.A.4** (+) Construct a tangent line from a point outside a given circle to the circle. | **Mathematics I**
SE/TE: 572 (#9)
Mathematics II
SE/TE: 686-689, 690 (#3) |
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find arc lengths and areas of sectors of circles</td>
<td></td>
</tr>
<tr>
<td>Find arc lengths and areas of sectors of circles</td>
<td></td>
</tr>
<tr>
<td>HSG-C.B.5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.</td>
<td>Mathematics II SE/TE: 647 (#2-3), 654-657, 658 (#1-3)</td>
</tr>
<tr>
<td>Mathematics III SE/TE: 397-399, 401 (#12), 402 (#15-16)</td>
<td></td>
</tr>
<tr>
<td>Expressing Geometric Properties with Equations</td>
<td></td>
</tr>
<tr>
<td>Translate between the geometric description and the equation for a conic section</td>
<td></td>
</tr>
<tr>
<td>HSG-GPE.A.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.</td>
<td>Mathematics II SE/TE: 802-803, 825 (#2), 827 (#8)</td>
</tr>
<tr>
<td>Mathematics III SE/TE: 693-694, 742, 745-746, 752 (#6-7), 762-763</td>
<td></td>
</tr>
<tr>
<td>HSG-GPE.A.2 Derive the equation of a parabola given a focus and directrix.</td>
<td>Mathematics II SE/TE: Honors Appendix: 968, 970 (#9), 971-972, 978 (#6-7)</td>
</tr>
<tr>
<td>Mathematics III SE/TE: 743 (#2, 4), 747-748, 749-750, 753 (#11-12), 754-757, 760 (#7), 762-767</td>
<td></td>
</tr>
<tr>
<td>HSG-GPE.A.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.</td>
<td>Mathematics II SE/TE: Honors Appendix: 968, 969 (#2, 4), 970 (#10-11), 973-974, 975-976, 979 (#11), 981-982</td>
</tr>
<tr>
<td>Mathematics III SE/TE: 747-748, 749-750, 753 (#11-12), 754-757, 760 (#7), 762-767</td>
<td></td>
</tr>
<tr>
<td>Use coordinates to prove simple geometric theorems algebraically</td>
<td></td>
</tr>
<tr>
<td>Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, (\sqrt{3})) lies on the circle centered at the origin and containing the point (0, 2).</td>
<td>Mathematics I SE/TE: 678 (#10)</td>
</tr>
<tr>
<td>Mathematics II SE/TE: 728-734, 808-813, 814-820</td>
<td></td>
</tr>
<tr>
<td>Mathematics III For related content, please see: SE/TE: 692-697</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards

(+) Standards needed for advanced courses such as calculus

SE = Student Edition

TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSG-GPE.B.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).</td>
<td>Mathematics I For related content, please see: SE/TE: 308-309, 310 (#1), 311 (#5-9), 669, 672 (#6), 674-676, 677 (#1-2, 5-6)</td>
</tr>
<tr>
<td>HSG-GPE.B.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.</td>
<td>Mathematics I For related content, please see: SE/TE: 664-665, 666 (#2, 5-6), 678 (#12), Honors Appendix: 716 (#21)</td>
</tr>
<tr>
<td>HSG-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*</td>
<td>Mathematics I For related content, please see: SE/TE: 662-664, 666 (#2-3), 678 (#8)</td>
</tr>
<tr>
<td>Geometric Measurement & Dimension</td>
<td>Mathematics II For related content, please see: SE/TE: 560 (#11-13), 728-734, 769-770</td>
</tr>
</tbody>
</table>

Explain volume formulas and use them to solve problems

| HSG-GMD.A.1 **Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.** | Mathematics II **SE/TE:** 629-634, 635-639, 645-646, 763-768, 773-779, 780-784, 785 (#1-6) |
| HSG-GMD.A.2 (+) **Give an informal argument using Cavalieri’s principle for the formulas for the volume of a sphere and other solid figures.** | Mathematics II **SE/TE:** 773-779, 780-787, 788-794 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
Common Core State Standards for Mathematics – High School

HSG-GMD.A.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*

| Mathematics II | SE/TE: | 763-768, 773-779, 780-784, 785 (#3, 6), 788-794 |

Visualize relationships between two-dimensional and three-dimensional objects

HSG-GMD.B.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

| Mathematics II | For related content, please see: SE/TE: | 773-779, Honors Appendix: 964-970 |
| Mathematics III | For related content, please see: SE/TE: | 735, 736 (#7-8), 738-742 |

Modeling with Geometry

Apply geometric concepts in modeling situations

**HSG-MG.A.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*

| Mathematics II | For related content, please see: SE/TE: | 443 (#13), 707-709, 767 (#5-8), 768 (#9-12) |

**HSG-MG.A.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*

| Mathematics II | For related content, please see: SE/TE: | 608-612 |
| Mathematics III | SE/TE: | 731 (#2), 733 (#8) |

**HSG-MG.A.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

| Mathematics III | SE/TE: | 719-723, 725-727 |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition

45
Common Core State Standards for Mathematics – High School

Statistics & Probability

<table>
<thead>
<tr>
<th>Interpreting Categorical & Quantitative Data</th>
</tr>
</thead>
</table>

Summarize, represent, and interpret data on a single count or measurement variable

<table>
<thead>
<tr>
<th>HSS-ID.A.1</th>
<th>Mathematics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent data with plots on the real number line (dot plots, histograms, and box plots).</td>
<td>SE/TE: 488-489, 491 (#1, 3-4), 492 (#6-8), 493 (#10), 494 (#12), 495-499, 500 (#4), 501 (#9), 495-499, 520 (#1, 3)</td>
</tr>
<tr>
<td>Mathematics III</td>
<td></td>
</tr>
<tr>
<td>For related content, please see: SE/TE: 273-274, 275 (#5, 8), 277-281, 292 (#14)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HSS-ID.A.2</th>
<th>Mathematics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.</td>
<td>SE/TE: 481-487, 489 (#4), 490 (#6), 491 (#2, 4), 492 (#7), 493 (#11), 494 (#13-14), 495-498, 499 (#1), 500 (#2-7), 501 (#9)</td>
</tr>
<tr>
<td>Mathematics III</td>
<td></td>
</tr>
<tr>
<td>SE/TE: 211-217</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HSS-ID.A.3</th>
<th>Mathematics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).</td>
<td>SE/TE: 488 (#2), 493 (#11), 495-499, 500-501, 536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HSS-ID.A.4</th>
<th>Mathematics III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.</td>
<td>SE/TE: 273-275, 277-283, 284 (#5), 286 (#13), 287-290, 291-292</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summarize, represent, and interpret data on two categorical and quantitative variables</td>
<td></td>
</tr>
</tbody>
</table>
| **HSS-ID.B.5** Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. | Mathematics I
SE/TE: 503-506, 506 (#1), 507-510 |
| **HSS-ID.B.6** Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. | Mathematics I
SE/TE: 511-514, 515-519, 528-531, 533 (#4) |
| **HSS-ID.B.6a** Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. | Mathematics I
SE/TE: 523-524, 525-527, 529-530, 532 (#3), 534 (#8), |
| **HSS-ID.B.6b** Informally assess the fit of a function by plotting and analyzing residuals. | This standard is outside the scope of Integrated CME. |
| **HSS-ID.B.6c** Fit a linear function for a scatter plot that suggests a linear association. | Mathematics I
SE/TE: 528-531, 532-535, 536-537, 539-542, 543-545, 546-549, 550 |
| Interpret linear models | |
| **HSS-ID.C.7** Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. | Mathematics I
SE/TE: 253-257, 257 (#1), 258-261, 289-291, 292-293, 529-531, 532 (#3), 534 (#7-8), 535 (#11), 537 (#1), 539 (#3-4) |
| **HSS-ID.C.8** Compute (using technology) and interpret the correlation coefficient of a linear fit. | Mathematics I
SE/TE: 511-514, 515 (#3, 5), 516 (#6), 519 (#12-13) |

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher's Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS-ID.C.9 Distinguish between correlation and causation.</td>
<td>Mathematics I SE/TE: 514, 516 (#6)</td>
</tr>
</tbody>
</table>

Making Inferences & Justifying Conclusions

Understand and evaluate random processes underlying statistical experiments

HSS-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Mathematics III SE/TE: 209-210, 235-236, 237-239, 243, 245 (#7, 9), 291 (#1-2)
HSS-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	Mathematics II SE/TE: 379-380
HSS-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Mathematics III SE/TE: 237-246, 252, 253, 254, 255, 258 (#9), 259 (#12)
HSS-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	Mathematics III For related content, please see: SE/TE: 209-210, 235-236, 252-255, 256 (#5), 257 (#6), 258 (#8), 261-265, 266-270
HSS-IC.B.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	Mathematics III SE/TE: 237-239, 240-246, 255 (#1), 256 (#3-4), 258 (#10, 12)

★ indicates modeling standards
(+ Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS-IC.B.6 Evaluate reports based on data.</td>
<td>Mathematics III</td>
</tr>
<tr>
<td></td>
<td>SE/TE: 237-239, 240-246, 255 (#2), 257 (#6), 258 (#10-11), 287-292</td>
</tr>
</tbody>
</table>

Probability & the Rules of Probability

Understand independence and conditional probability and use them to interpret data

HSS-CP.A.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”).	**Mathematics II**
	SE/TE: 379, 381-387
	Mathematics III
	SE/TE: 177-178, 180-181, 182-183

HSS-CP.A.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	**Mathematics I**
	For related content, please see: **SE/TE:** 505-506, 507 (#5), 510 (#14-15)
	Mathematics II
	SE/TE: 384-385
	Mathematics III
	SE/TE: 180-181, 182 (#8), 183 (#10)

| **HSS-CP.A.3** Understand the conditional probability of A given B as \(P(A \text{ and } B)/P(B) \), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. | **Mathematics II** |
| | **SE/TE:** 388-390, 391 (#8-9), 391 (Theorem 5.2; #13), 392, 394 (#11), 395-400 |

HSS-CP.A.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. *For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.*	**Mathematics I**
	SE/TE: 504, 505 (#4-5), 507 (#3-7), 509 (#8-9, 11), 510 (#17-18)
	Mathematics II
	SE/TE: 393 (#5, 7), 394 (#8-9), 395-400
	Mathematics III
	SE/TE: 239 (#7, 9, 11), 246 (#9)

★ indicates modeling standards

(+) Standards needed for advanced courses such as calculus

SE = Student Edition

TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
</table>
| **HSS-CP.A.5** Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. *For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.* | Mathematics II
SE/TE: 389-391, 392-394, 395-400 |
| **Use the rules of probability to compute probabilities of compound events.** | |
| **HSS-CP.B.6** Find the conditional probability of \(A \) given \(B \) as the fraction of \(B \)'s outcomes that also belong to \(A \), and interpret the answer in terms of the model. | Mathematics II
SE/TE: 388 (#1), 391 (#10-13), 392 (#3, 4), 393 (#7), 394 (#8-10), 395-400 |
| **HSS-CP.B.7** Apply the Addition Rule, \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \), and interpret the answer in terms of the model. | Mathematics II
SE/TE: 381-387 |
| **HSS-CP.B.8** (+) Apply the general Multiplication Rule in a uniform probability model, \(P(A \text{ and } B) = P(A)P(B|A) = P(B)P(A|B) \), and interpret the answer in terms of the model. | Mathematics II
SE/TE: 388-394, 395-400 |
| **HSS-CP.B.9** (+) Use permutations and combinations to compute probabilities of compound events and solve problems. | Mathematics II
SE/TE: 386 (#4), 401-406, 407-414 |
| **Using Probability to Make Decisions** | |
| Calculate expected values and use them to solve problems | |
| **HSS-MD.A.1** (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions. | Mathematics II
SE/TE: 381-387, 408-414 |
| **Mathematics III** | Mathematics III
SE/TE: 177, 191-194, 195, 273-276, 277-283 |

★ indicates modeling standards
(+): Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
A Correlation of Pearson Integrated CME Project, Mathematics I-III to the Common Core State Standards for Mathematics

<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS-MD.A.2 (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.</td>
<td>Mathematics II
SE/TE: 409-410 411, 413 (#5, 7-11), 414 (#15), 415-416, 419-421</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 190-194, 195-196, 197 (#15), 198-201, 202-205</td>
<td></td>
</tr>
<tr>
<td>HSS-MD.A.3 (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.</td>
<td>Mathematics II
SE/TE: 407-414</td>
</tr>
<tr>
<td>HSS-MD.A.4 (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?</td>
<td>Mathematics II
For related content, please see:
SE/TE: 415-416, 419-421</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 209-210, 211-217</td>
<td></td>
</tr>
<tr>
<td>Use probability to evaluate outcomes of decisions
HSS-MD.B.5 (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.</td>
<td>Mathematics II
SE/TE: 415-418, 419-422</td>
</tr>
<tr>
<td>Mathematics III
SE/TE: 190-197, 198-199, 200 (#1), 201, 201 (#2), 204 (#9)</td>
<td></td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+): Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition
<table>
<thead>
<tr>
<th>Common Core State Standards for Mathematics – High School</th>
<th>Integrated CME Project ©2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS-MD.B.5a Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.</td>
<td>Mathematics II
SE/TE: 407-414, 415-422</td>
</tr>
<tr>
<td>HSS-MD.B.5b Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.</td>
<td>Mathematics III
SE/TE: 209-210, 218-226, 247-251</td>
</tr>
<tr>
<td>HSS-MD.B.6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).</td>
<td>Mathematics II
SE/TE: 379-380, 381-387</td>
</tr>
<tr>
<td></td>
<td>Mathematics III
SE/TE: 175-176, 177-183</td>
</tr>
<tr>
<td>HSS-MD.B.7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).</td>
<td>Mathematics II
SE/TE: 415-422</td>
</tr>
<tr>
<td></td>
<td>Mathematics III
SE/TE: 198-205</td>
</tr>
</tbody>
</table>

★ indicates modeling standards
(+) Standards needed for advanced courses such as calculus
SE = Student Edition
TE = Teacher’s Edition