Publisher: James Smith
Senior Development Editor: Alice Houston, Ph.D.
Senior Project Editor: Martha Steele
Assistant Editor: Peter Alston
Media Producer: Kelly Reed
Senior Administrative Assistant: Cathy Glenn
Director of Marketing: Christy Lesko
Executive Marketing Manager: Kerry McGinnis
Managing Editor: Corinne Benson
Production Project Manager: Beth Collins
Production Management, Composition, and Interior Design: Cenveo Publisher Services/Nesbitt Graphics, Inc.
Illustrations: Rolin Graphics
Cover Design: Yvo Riezebos Design
Manufacturing Buyer: Jeff Sargent
Photo Research: Eric Schrader
Image Lead: Maya Melenchuk
Cover Printer: Lehigh-Phoenix
Text Printer and Binder: R.R. Donnelley/Willard
Cover Image: Composite illustration by Yvo Riezebos Design
Photo Credits: See page C-1

Library of Congress Cataloging-in-Publication Data
Knight, Randall Dewey.
p. cm.
Includes bibliographical references and index.
1. Physics--Textbooks. I. Title.
QC23.2.K654 2012
530--dc23
2011033849
Copyright © 2013, 2008, 2004 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call (847) 486-2635.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

MasteringPhysics is a trademark, in the U.S. and/or other countries, of Pearson Education, Inc. or its affiliates.

www.PearsonSchool.com/Advanced
Brief Contents

Part I Newton's Laws
- **Chapter 1** Concepts of Motion 2
- **Chapter 2** Kinematics in One Dimension 33
- **Chapter 3** Vectors and Coordinate Systems 69
- **Chapter 4** Kinematics in Two Dimensions 85
- **Chapter 5** Force and Motion 116
- **Chapter 6** Dynamics I: Motion Along a Line 138
- **Chapter 7** Newton's Third Law 167
- **Chapter 8** Dynamics II: Motion in a Plane 191

Part II Conservation Laws
- **Chapter 9** Impulse and Momentum 220
- **Chapter 10** Energy 245
- **Chapter 11** Work 278

Part III Applications of Newtonian Mechanics
- **Chapter 12** Rotation of a Rigid Body 312
- **Chapter 13** Newton's Theory of Gravity 354
- **Chapter 14** Oscillations 377
- **Chapter 15** Fluids and Elasticity 407

Part IV Thermodynamics
- **Chapter 16** A Macroscopic Description of Matter 444
- **Chapter 17** Work, Heat, and the First Law of Thermodynamics 469
- **Chapter 18** The Micro/Macro Connection 502
- **Chapter 19** Heat Engines and Refrigerators 526

Part V Waves and Optics
- **Chapter 20** Traveling Waves 560
- **Chapter 21** Superposition 591
- **Chapter 22** Wave Optics 627
- **Chapter 23** Ray Optics 655
- **Chapter 24** Optical Instruments 694

Part VI Electricity and Magnetism
- **Chapter 25** Electric Charges and Forces 720
- **Chapter 26** The Electric Field 750
- **Chapter 27** Gauss's Law 780
- **Chapter 28** The Electric Potential 810
- **Chapter 29** Potential and Field 839
- **Chapter 30** Current and Resistance 867
- **Chapter 31** Fundamentals of Circuits 891
- **Chapter 32** The Magnetic Field 921
- **Chapter 33** Electromagnetic Induction 962
- **Chapter 34** Electromagnetic Fields and Waves 1003
- **Chapter 35** AC Circuits 1033

Part VII Relativity and Quantum Physics
- **Chapter 36** Relativity 1060
- **Chapter 37** The Foundations of Modern Physics 1102
- **Chapter 38** Quantization 1125
- **Chapter 39** Wave Functions and Uncertainty 1156
- **Chapter 40** One-Dimensional Quantum Mechanics 1179
- **Chapter 41** Atomic Physics 1216
- **Chapter 42** Nuclear Physics 1248

Appendixes
- **Appendix A** Mathematics Review A-1
- **Appendix B** Periodic Table of Elements A-4
- **Appendix C** Atomic and Nuclear Data A-5
- **Appendix D** ActivPhysics OnLine Activities and PhET Simulations A-9
- **Answers to Odd-Numbered Problems** A-11
pull back? One way to find out is to attach the spring to a bar, as shown in Figure 10.14. If you now stretch the spring to length or unstretched, length. A force that restores a system to an equilibrium position is called a restoring force. Similarly, a compressed spring tries to re-expand to its equilibrium. That is, the data fall along the straight line $F = -kx$. The graph shows that the restoring force is proportional to the displacement F. The slope of the force-versus-displacement graph, is k. The restoring force is proportional to the displacement that the end of the spring has moved, which we call the restoring force (k).

Before: After:

EXAMPLE 4.15 Analyzing rotational data

We know the velocities before and after the collision, so we can use the conservation of linear momentum to find the angular acceleration.

$$v_{coll} = \frac{1.89 \text{ rad/s}}{0.15 \text{ m}} = 12.6 \text{ rad/s}^2$$

We can then use its slope to determine the angular acceleration:

$$\alpha = \frac{v_{coll}^2 - v_{in}^2}{r} = \frac{(12.6 \text{ rad/s})^2 - (2.5 \text{ rad/s})^2}{0.38 \text{ m}} = 0.38 \text{ rad/s}^2$$

TACTIC 4.20 Drawing a before-and-after pictorial representation

At the heart of the problem-solving instruction is the consistent 4-step **MODEL/ VISUALIZE/ SOLVE/ ASSESS** approach, used throughout the book and all supplements. **Problem-Solving Strategies** provide detailed guidance for particular topics and categories of problems, often drawing on key skills outlined in the step-by-step procedures of Tactic Boxes. Problem-Solving Strategies and Tactic Boxes are also illustrated in dedicated MasteringPhysics® **Skill-Builder Tutorials**.

NEW! Challenge Examples illustrate how to integrate multiple concepts and use more sophisticated reasoning.

NEW! The Mastering Study Area also has Video Tutor Solutions, created by Randy Knight’s College Physics co-author Brian Jones. These engaging and helpful videos walk students through a representative problem for each main topic, often starting with a qualitative overview in the context of a lab- or real-world demo.
Promotes deeper understanding…
... using powerful techniques from multimedia learning theory that focus and structure student learning, and improve engagement and retention.

14 Oscillations

NEW! Illustrated Chapter Previews give an overview of the upcoming ideas for each chapter, setting them in context, explaining their utility, and tying them to existing knowledge (through Looking Back references).

Summary

- General Principles
 - Hooke's Law
 - Damping and Resonance

- Important Concepts
 - Phase
 - Energy of oscillations

- Applications
 - Simple harmonic motion
 - Pendulums

- Terms and Notation

NEW! Illustrated Chapter Previews give an overview of the upcoming ideas for each chapter, setting them in context, explaining their utility, and tying them to existing knowledge (through Looking Back references).

Critical acclaimed Visual Chapter Summaries and Part Knowledge Structures consolidate understanding by providing key concepts and principles in words, math, and figures and organizing these into a hierarchy.

NEW! Life-science and bioengineering examples evoke general interest while providing context.

NEW! PhET Simulations and Tutorials allow students to explore real-life phenomena and discover the underlying physics. Sixteen tutorials are provided in the MasteringPhysics item library, and 76 PhET simulations are available in the Study Area and Pearson eText, along with the comprehensive library of ActivPhysics applets and applet-based tutorials.

NEW! Video Tutor Demonstrations feature “pause-and-predict” demonstrations of key physics concepts and incorporate assessment as the student progresses to actively engage them in understanding the key conceptual ideas underlying the physics principles.
51. A geologist needs to determine the local value of \(g \). Unfortunately, he only tools are a meter stick, a saw, and a stopwatch. He starts by hanging the meter stick from one end and measuring its frequency as it swings. He then swings off 20 cm—using the centimeter markings—and measures the frequency again. After two more cuts, these are his data:

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.62</td>
</tr>
<tr>
<td>30</td>
<td>0.57</td>
</tr>
<tr>
<td>60</td>
<td>0.79</td>
</tr>
<tr>
<td>90</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Use the best-fit line of an appropriate graph to determine the local value of \(g \).

An increased emphasis on symbolic answers encourages students to work algebraically.

NEW! Data-based end-of-chapter problems allow students to practice drawing conclusions from data (as demonstrated in the new data-based examples in the text).

NEW! BIO problems are set in life-science, bioengineering, or biomedical contexts.

NEW! Student Workbook exercises help students work through a full solution symbolically, structured around the relevant textbook Problem-Solving Strategy.

NEW! Enhanced end-of-chapter problems in MasteringPhysics now offer additional support such as problem-solving strategy hints, relevant math review and practice, links to the eText, and links to the related Video Tutor Solution.

NEW! Math Remediation found within selected MasteringPhysics tutorials provide just-in-time math help and allow students to brush up on the most important mathematical concepts needed to successfully complete assignments. This new feature links students directly to math review and practice helping students make the connection between math and physics.
Make a difference with MasteringPhysics…
… the most effective and widely used online science tutorial, homework, and assessment system available.

Pre-Built Assignments. For every chapter in the book, MasteringPhysics provides pre-built assignments that cover the material with a tested mix of tutorials and end-of-chapter problems of graded difficulty. Teachers may use these assignments as-is or take them as a starting point for modification.

NEW! Quizzing and Testing Enhancements.
These include options to:
• Hide item titles.
• Add password protection.
• Limit access to completed assignments.
• Randomize question order in an assignment.

Gradebook
• Every assignment is graded automatically.
• Shades of red highlight vulnerable students and challenging assignments.
• The Gradebook Diagnostics screen provides your favorite weekly diagnostics, summarizing grade distribution, improvement in scores over the course, and much more.

Class Performance on Assignment. Click on a problem to see which step your students struggled with most, and even their most common wrong answers. Compare results at every stage with the national average or with your previous class.

NEW! Learning Outcomes. In addition to being able to create your own learning outcomes to associate with questions in an assignment, you can now select content that is tagged to a large number of publisher-provided learning outcomes. You can also print or export student results based on learning outcomes for your own use or to incorporate into reports for your administration.
Preface to the Teacher

In 2003 we published *Physics for Scientists and Engineers: A Strategic Approach*. This was the first comprehensive calculus-based introductory textbook built from the ground up on research into how students can more effectively learn physics. The development and testing that led to this book had been partially funded by the National Science Foundation. For the second edition, and now the third, we have built on the research-proven instructional techniques introduced in the first edition and the extensive feedback from thousands of users to take student learning even further.

Objectives

My primary goals in writing *Physics for Scientists and Engineers: A Strategic Approach* have been:

- To produce a textbook that is more focused and coherent, less encyclopedic.
- To move key results from physics education research into the classroom in a way that allows teachers to use a range of teaching styles.
- To provide a balance of quantitative reasoning and conceptual understanding, with special attention to concepts known to cause student difficulties.
- To develop students’ problem-solving skills in a systematic manner.
- To support an active-learning environment.

What’s New to This Edition

For this third edition, we continue to apply the best results from educational research, and to refine and tailor them for this course and its students. At the same time, the extensive feedback we’ve received has led to many changes and improvements to the text, the figures, and the end-of-chapter problems. These include:

- New illustrated Chapter Previews give a visual overview of the upcoming ideas, set them in context, explain their utility, and tie them to existing knowledge (through Looking Back references). These Previews build on the cognitive psychology concept of an “advance organizer.”
- New Challenge Examples illustrate how to integrate multiple concepts and use more sophisticated reasoning in problem solving, ensuring an optimal range of worked examples for students to study in preparation for homework problems.
- New Data-based Examples help students with the skill of drawing conclusions from laboratory data. Designed to supplement lab-based instruction, these examples also help students in general with mathematical reasoning, graphical interpretation, and assessment of results.

End-of-chapter problem enhancements include the following:

- Data from MasteringPhysics have been thoroughly analyzed to ensure an optimal range of difficulty, problem types, and topic coverage. In addition, the wording of every problem has been reviewed for clarity. Roughly 20% of the end-of-chapter problems are new or significantly revised.
- Data-based problems allow students to practice drawing conclusions from data (as demonstrated in the new data-based examples in the text).
An increased emphasis on symbolic answers encourages students to work algebraically. The Student Workbook also contains new exercises to help students work through symbolic solutions.

Bio problems are set in life-science, bioengineering, or biomedical contexts.

Targeted content changes have been carefully implemented throughout the book. These include:

- Life-science and bioengineering worked examples and applications focus on the physics of life-science situations.
- Descriptive text throughout has been streamlined to focus the presentation and generate a shorter text.
- The chapter on Modern Optics and Matter Waves has been re-worked into Chapters 38 and 39 to streamline the coverage of this material.

At the front of the book, you’ll find an illustrated walkthrough of the new pedagogical features in this third edition. The Preface to the Student demonstrates how all the book’s features are designed to help your students.

Textbook Organization

There’s a growing sentiment that quantum physics is quickly becoming the province of engineers, not just scientists, and that even a year-long course should include a reasonable introduction to quantum ideas. The Instructor Guide outlines a couple of routes through the book that allow most of the quantum physics chapters to be included in a year-long course. I’ve written the book with the hope that an increasing number of teachers will choose one of these routes.

The full textbook is divided into seven parts: Part I: Newton’s Laws, Part II: Conservation Laws, Part III: Applications of Newtonian Mechanics, Part IV: Thermodynamics, Part V: Waves and Optics, Part VI: Electricity and Magnetism, and Part VII: Relativity and Quantum Physics. Although I recommend covering the parts in this order (see below), doing so is by no means essential. Each topic is self-contained, and Parts III–VI can be rearranged to suit a teacher’s needs.

Organization Rationale: Thermodynamics is placed before waves because it is a continuation of ideas from mechanics. The key idea in thermodynamics is energy, and moving from mechanics into thermodynamics allows the uninterrupted development of this important idea. Further, waves introduce students to functions of two variables, and the mathematics of waves is more akin to electricity and magnetism than to mechanics. Thus moving from waves to fields to quantum physics provides a gradual transition of ideas and skills.

The purpose of placing optics with waves is to provide a coherent presentation of wave physics, one of the two pillars of classical physics. Optics as it is presented in algebra-based physics makes no use of the properties of electromagnetic fields. There’s little reason other than historical tradition to delay optics until after E&M. The documented difficulties that students have with optics are difficulties with waves, not difficulties with electricity and magnetism. However, the optics chapters are easily deferred until the end of Part VI for teachers who prefer that ordering of topics.

The Student Workbook

A key component of Physics for Scientists and Engineers: A Strategic Approach is the accompanying Student Workbook. The workbook bridges the gap between textbook and homework problems by providing students the opportunity to learn and practice
Teacher Supplements

Most of the teacher supplements and resources for this text are available electronically to qualified adopters on the Instructor Resource Center (IRC). Upon adoption or to preview, please go to www.PearsonSchool.com/Access_Request and select Instructor Resource Center (Option 1). You will be required to complete a brief one-time registration, subject to verification of educator status. Upon verification, access information and instructions will be sent to you via e-mail. Once logged into the IRC, enter your text ISBN in the “Search our Catalog” box at PearsonHigherEd.com/educator to locate your resources.

- The Instructor Guide for Physics for Scientists and Engineers (ISBN 978-0-321-74765-5/0-321-74765-8) offers detailed comments and suggested teaching ideas for every chapter, an extensive review of what has been learned from physics education research, and guidelines for using active-learning techniques in your classroom. This invaluable guide is available on the Instructor Resource DVD, and via download, either from the MasteringPhysics Instructor Area or from the Instructor Resource Center (www.pearsonhighered.com/educator).

- The Instructor Solutions (ISBN 978-0-321-76940-4/0-321-76940-6), provide complete solutions to all the end-of-chapter problems. The solutions follow the four-step Model/Visualize/Solve/Assess procedure used in the Problem-Solving Strategies and in all worked examples. The solutions are available by chapter as editable Word® documents and as PDFs for your own use. Also provided are PDFs of handwritten solutions to all of the exercises in the Student Workbook. All solutions are available only via download, either from the MasteringPhysics Instructor Area or from the Instructor Resource Center (www.pearsonhighered.com/educator).

- The cross-platform Instructor Resource DVD (ISBN 978-0-321-75456-1/0-321-75456-5) provides a comprehensive library of more than 220 applets from ActivPhysics OnLine and 76 PhET simulations, as well as all figures, photos, tables, summaries, and key equations from the textbook in JPEG format. In addition, all the Problem-Solving Strategies, Tactics Boxes, and Key Equations are provided in editable Word format. PowerPoint® Lecture Outlines with embedded Classroom Response System “Clicker” Questions (including reading quizzes) are also provided.

- MasteringPhysics® (www.masteringphysics.com)

Upon textbook purchase, students and teachers are granted access to MasteringPhysics. High school teachers can obtain preview or adoption access for MasteringPhysics in one of the following ways:

- **Preview Access**
 - Teachers can request preview access online by visiting PearsonSchool.com/Access_Request, using Option 2/3. Preview Access information will be sent to the teacher via email.

- **Adoption Access**
 - With the purchase of this program, a Pearson Adoption Access Card, with codes and complete instructions, will be delivered with the textbook purchase. (ISBN: 0-13-034391-9)

OR

- Visit PearsonSchool.com/Access_Request and select Option 2/3. Adoption access information will be sent to the teacher via email. Students, ask your teacher for access.
MasteringPhysics is the most advanced, educationally effective, and widely used physics homework and tutorial system in the world. Eight years in development, it provides teachers with a library of extensively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials that incorporate a wide variety of answer types, wrong answer feedback and individualized help (comprising hints or simpler sub-problems upon request) all driven by the largest metadatabase of student problem solving in the world. NSF-sponsored published research (and subsequent studies) show that MasteringPhysics has dramatic educational results. MasteringPhysics allows teachers to build wide-ranging homework assignments of just the right difficulty and length, and provides them with efficient tools to analyze in unprecedented detail both class trends and the work of any student.

MasteringPhysics routinely provides instant and individualized feedback and guidance to more than 100,000 students every day. A wide range of tools and support make MasteringPhysics fast and easy for teachers and students to learn to use. Extensive class tests show that by the end of their course, an unprecedented nine of ten students recommend MasteringPhysics as their preferred way to study physics and do homework.

For the third edition of Physics for Scientists and Engineers, MasteringPhysics now has the following functionalities:

- **Learning Outcomes:** In addition to being able to create their own learning outcomes to associate with questions in an assignment, teachers can now select content that is tagged to a large number of publisher-provided learning outcomes. They can also print or export student results based on learning outcomes for their own use or to incorporate into reports for their administration.

- **Quizzing and Testing Enhancements:** These include options to hide item titles, add password protection, limit access to completed assignments, and to randomize question order in an assignment.

- **Math Remediation:** Found within selected tutorials, special links provide just-in-time math help and allow students to brush up on the most important mathematical concepts needed to successfully complete assignments. This new feature links students directly to math review and practice, helping students make the connection between math and physics.

- **Enhanced End-of-Chapter Problems:** A subset of homework problems now offer additional support such as problem-solving strategy hints, relevant math review and practice, links to the eText, and links to the related Video Tutor Solution.

- **ActivPhysics OnLine™** (accessed through the Self Study area within www.masteringphysics.com) provides a comprehensive library of more than 220 tried and tested ActivPhysics core applets updated for web delivery using the latest online technologies. In addition, it provides a suite of highly regarded applet-based tutorials developed by education pioneers Alan Van Heuvelen and Paul D’Alessandris.

 The online exercises are designed to encourage students to confront misconceptions, reason qualitatively about physical processes, experiment quantitatively, and learn to think critically. The highly acclaimed ActivPhysics OnLine companion workbooks help students work through complex concepts and understand them more clearly. The applets from the ActivPhysics OnLine library are also available on the Instructor Resource DVD for this text.

- The **Test Bank** (ISBN 978-0-321-74766-2/0-321-74766-6) contains more than 2,000 high-quality problems, with a range of multiple-choice, true/false, short-answer, and regular homework-type questions. Test files are provided both in TestGen (an easy-to-use, fully networkable program for creating and editing quizzes and exams) and Word format. They are available only via download, either from the MasteringPhysics Instructor Area or from the Instructor Resource Center (www.pearsonhighered.com/educator).

Student Supplements

The following resources are available for purchase:

- **MasteringPhysics** (www.masteringphysics.com) is a homework, tutorial, and assessment system based on years of research into how students work physics problems and precisely where they need help. Studies show that students who use MasteringPhysics significantly increase their scores compared to hand-written homework. MasteringPhysics achieves this improvement by providing students with instantaneous feedback specific to their wrong answers, simpler sub-problems upon request when they get stuck, and partial credit for their method(s). This individualized, 24/7 Socratic tutoring is recommended by 9 out of 10 students to their peers as the most effective and time-efficient way to study.
Acknowledgments

I have relied upon conversations with and, especially, the written publications of many members of the physics education research community. Those who may recognize their influence include Arnold Arons, Uri Ganiel, Ibrahim Halloun, Richard Hake, Ken Keller, Paula Heron, David Hestenes, Leonard Jossem, Jill Larkin, Priscilla Laws, John Mallinckrodt, Kandiah Manivannan, Lillian McDermott and members of the Physics Education Research Group at the University of Washington, David Meltzer, Edward “Joe” Redish, Fred Reif, Jeffrey Saul, Rachel Scherr, Bruce Sherwood, Josip Slisko, David Sokoloff, Richard Steinberg, Ronald Thornton, Sheila Tobias, Alan Van Heuvelen, and Michael Wittmann. John Rigden, founder and director of the Introductory University Physics Project, provided the impetus that got me started down this path. Early development of the materials was supported by the National Science Foundation as the Physics for the Year 2000 project; their support is gratefully acknowledged.

I especially want to thank my editor Jim Smith, development editor Alice Houston, project editor Martha Steele, and all the other staff at Pearson for their enthusiasm and hard work on this project. Production project manager Beth Collins, Rose Kernan and the team at Nesbitt Graphics, Inc., and photo researcher Eric Schrader get a good deal of the credit for making this complex project all come together. Larry Smith and Brett Kraabel have done an outstanding job of checking the solutions to every end-of-chapter problem and updating the Instructor Solutions Manual. Jim Andrews and Brian Garcar must be thanked for so carefully writing out the solutions to The Student Workbook exercises, and Jason Harlow for putting together the Lecture Outlines. In addition to the reviewers and classroom testers listed below, who gave invaluable feedback, I am particularly grateful to Charlie Hibbard for his close scrutiny of every word and figure.

Finally, I am endlessly grateful to my wife Sally for her love, encouragement, and patience, and to our many cats, past and present, who understand clearly that their priority is not deadlines but “Pet me, pet me, pet me.”

Randy Knight, September 2011
rknight@calpoly.edu

Reviewers and Classroom Testers

Special thanks go to our third edition review panel: Kyle Altman, Taner Edis, Kent Fisher, Marty Gelfand, Elizabeth George, Jason Harlow, Bob Jacobsen, David Lee, Gary Morris, Eric Murray, and Bruce Schumm.

Gary B. Adams, Arizona State University
Ed Adelson, Ohio State University
Kyle Altman, Elon University
Wayne R. Anderson, Sacramento City College
James H. Andrews, Youngstown State University
Kevin Ankovia, Las Positas College
David Balogh, Fresno City College
Dewayne Beery, Buffalo State College

Joseph Bellina, Saint Mary’s College
James R. Benbrook, University of Houston
David Besson, University of Kansas
Randy Bohn, University of Toledo
Richard A. Bone, Florida International University
Gregory Boutis, York College
Art Braundmeier, University of Southern Illinois, Edwardsville
Carl Bromberg, Michigan State University
Meade Brooks, Collin College
Douglas Brown, Cabrillo College
Ronald Brown, California Polytechnic State University, San Luis Obispo
Preface to the Teacher
Preface to the Teacher

Benedict Y. Oh, University of Wisconsin
Martin Okafor, Georgia Perimeter College
Halina Opyrchal, New Jersey Institute of Technology
Yibin Pan, University of Wisconsin–Madison
Georgia Papaelthymiou, Villanova University
Peggy Perozzo, Mary Baldwin College
Brian K. Pickett, Purdue University
Dale Pleticha, Gordon College
Marie Plumb, Jamestown Community College
Robert Pompi, SUNY–Binghamton
David Potter, Austin Community College–Río Grande Campus
Chandra Prayaga, University of West Florida
Didarul Qadir, Central Michigan University
Steve Quon, Ventura College
Michael Read, College of the Siskiyous
Lawrence Rees, Brigham Young University
Richard J. Reimann, Boise State University
Michael Rodman, Spokane Falls Community College
Sharon Rosell, Central Washington University
Anthony Russo, Okaloosa-Walton Community College
Freddie Salsbury, Wake Forest University
Otto F. Sankey, Arizona State University
Jeff Sanny, Loyola Marymount University
Rachel E. Scherr, University of Maryland
Carl Schneider, U. S. Naval Academy
Bruce Schumm, University of California, Santa Cruz
Bartlett M. Sheinberg, Houston Community College
Douglas Sherman, San Jose State University
Elizabeth H. Simmons, Boston University

Marlina Slamet, Sacred Heart University
Alan Slavin, Trent College
Larry Smith, Snow College
William S. Smith, Boise State University
Paul Sokol, Pennsylvania State University
LTC Bryndol Sones, United States Military Academy
Anna and Ivan Stern, AW Tutor Center
Gay B. Stewart, University of Arkansas
Michael Strauss, University of Oklahoma
Chin-Che Tin, Auburn University
Christos Valiotis, Antelope Valley College
Andrew Vanture, Everett Community College
Arthur Viescas, Pennsylvania State University
Ernst D. Von Meerwall, University of Akron
Chris Vuille, Embry-Riddle Aeronautical University
Jerry Wagner, Rochester Institute of Technology
Robert Webb, Texas A&M University
Zodiac Webster, California State University, San Bernardino
Robert Weidman, Michigan Technical University
Fred Weitfeldt, Tulane University
Jeff Allen Winger, Mississippi State University
Carey Witkov, Broward Community College
Ronald Zammit, California Polytechnic State University, San Luis Obispo
Darin T. Zimmerman, Pennsylvania State University, Altoona
Fredy Zypman, Yeshiva University
Preface to the Student

From Me to You

The most incomprehensible thing about the universe is that it is comprehensible.
—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, admittedly, because you can’t respond, but that’s OK. I’ve talked with many of your fellow students over the years, so I have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? Uncertainty? Excitement? All of the above? Let’s face it, physics has a bit of an image problem. You’ve probably heard that it’s difficult, maybe downright impossible unless you’re an Einstein. Things that you’ve heard, your experiences in other science courses, and many other factors all color your expectations about what this course is going to be like.

I think it’s fair to say that it will be an intense course. But we can avoid many potential problems and difficulties if we can establish, here at the beginning, what this course is about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking about the physical aspects of nature. Physics is not better than art or biology or poetry or religion, which are also ways to think about nature; it’s simply different. One of the things this course will emphasize is that physics is a human endeavor. The ideas presented in this book were not found in a cave or conveyed to us by aliens; they were discovered and developed by real people engaged in a struggle with real issues. I hope to convey to you something of the history and the process by which we have come to accept the principles that form the foundation of today’s science and engineering.

You might be surprised to hear that physics is not about “facts.” Oh, not that facts are unimportant, but physics is far more focused on discovering relationships that exist between facts and patterns that exist in nature than on learning facts for their own sake. As a consequence, there’s not a lot of memorization when you study physics. Some—there are still definitions and equations to learn—but less than in many other courses. Our emphasis, instead, will be on thinking and reasoning. This is important to factor into your expectations for the course.

Perhaps most important of all, physics is not math! Physics is much broader. We’re going to look for patterns and relationships in nature, develop the logic that relates different ideas, and search for the reasons why things happen as they do. In doing so, we’re going to stress qualitative reasoning, pictorial and graphical reasoning, and reasoning by analogy. And yes, we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this physics–math distinction up front. Many of you, I know, want to find a formula and plug numbers into it—that is, to do a math problem. We’ll certainly do many calculations, but the specific numbers are usually the last and least important step in the analysis.
Preface to the Student

Physics is about recognizing patterns. For example, the top photograph is an x-ray diffraction pattern showing how a focused beam of x rays spreads out after passing through a crystal. The bottom photograph shows what happens when a focused beam of electrons is shot through the same crystal. What does the obvious similarity in these two photographs tell us about the nature of light and the nature of matter?

As you study, you’ll sometimes be baffled, puzzled, and confused. That’s perfectly normal and to be expected. Making mistakes is OK too if you’re willing to learn from the experience. No one is born knowing how to do physics any more than he or she is born knowing how to play the piano or shoot basketballs. The ability to do physics comes from practice, repetition, and struggling with the ideas until you “own” them and can apply them yourself in new situations. There’s no way to make learning effortless, at least for anything worth learning, so expect to have some difficult moments ahead. But also expect to have some moments of excitement at the joy of discovery. There will be instants at which the pieces suddenly click into place and you know that you understand a powerful idea. There will be times when you’ll surprise yourself by successfully working a difficult problem that you didn’t think you could solve. My hope, as an author, is that the excitement and sense of adventure will far outweigh the difficulties and frustrations.

Getting the Most Out of Your Course

Many of you, I suspect, would like to know the “best” way to study for this course. There is no best way. People are different, and what works for one student is less effective for another. But I do want to stress that reading the text is vitally important. Class time will be used to clarify difficulties and to develop tools for using the knowledge, but your teacher will not use class time simply to repeat information in the text. The basic knowledge for this course is written down on these pages, and the number-one expectation is that you will read carefully and thoroughly to find and learn that knowledge.

Despite there being no best way to study, I will suggest one way that is successful for many students. It consists of the following four steps:

1. **Read each chapter before it is discussed in class.** I cannot stress too strongly how important this step is. Class attendance is much more effective if you are prepared. When you first read a chapter, focus on learning new vocabulary, definitions, and notation. There’s a list of terms and notations at the end of each chapter. Learn them! You won’t understand what’s being discussed or how the ideas are being used if you don’t know what the terms and symbols mean.

2. **Participate actively in class.** Take notes, ask and answer questions, and participate in discussion groups. There is ample scientific evidence that active participation is much more effective for learning science than passive listening.

3. **After class, go back for a careful re-reading of the chapter.** In your second reading, pay closer attention to the details and the worked examples. Look for the logic behind each example (I’ve highlighted this to make it clear), not just at what formula is being used. Do the Student Workbook exercises for each section as you finish your reading of it.

4. **Finally, apply what you have learned to the homework problems at the end of each chapter.** I strongly encourage you to form a study group with two or three classmates. There’s good evidence that students who study regularly with a group do better than the rugged individualists who try to go it alone.

Did someone mention a workbook? The companion Student Workbook is a vital part of the course. Its questions and exercises ask you to reason qualitatively, to use
graphical information, and to give explanations. It is through these exercises that you will learn what the concepts mean and will practice the reasoning skills appropriate to the chapter. You will then have acquired the baseline knowledge and confidence you need before turning to the end-of-chapter homework problems. In sports or in music, you would never think of performing before you practice, so why would you want to do so in physics? The workbook is where you practice and work on basic skills.

Many of you, I know, will be tempted to go straight to the homework problems and thenthumb through the text looking for a formula that seems like it will work. That approach will not succeed in this course, and it’s guaranteed to make you frustrated and discouraged. Very few homework problems are of the “plug and chug” variety where you simply put numbers into a formula. To work the homework problems successfully, you need a better study strategy—either the one outlined above or your own—that helps you learn the concepts and the relationships between the ideas.

Getting the Most Out of Your Textbook

Your textbook provides many features designed to help you learn the concepts of physics and solve problems more effectively.

- **TACTICS BOXES** give step-by-step procedures for particular skills, such as interpreting graphs or drawing special diagrams. Tactics Box steps are explicitly illustrated in subsequent worked examples, and these are often the starting point of a full Problem-Solving Strategy.

TACTICS BOX 5.1 Drawing a free-body diagram

1. **Identify all forces acting on the object.** This step was described in Tactics Box 5.2.
2. **Draw a coordinate system.** Use the axes defined in your pictorial representation.
3. **Represent the object as a dot at the origin of the coordinate axes.** This is the particle model.
4. **Draw vectors representing each of the identified forces.** This was described in Tactics Box 5.1. Be sure to label each force vector.
5. **Draw and label the net force vector \(\vec{F}_{\text{net}} \).** Draw this vector beside the diagram, not on the particle. Or, if appropriate, write \(\vec{F}_{\text{net}} = 0 \). Then check that \(\vec{F}_{\text{net}} \) points in the same direction as the acceleration vector \(\vec{a} \) on your motion diagram.

Exercise 24-25

TACTICS BOX 32.2 Evaluating line integrals

1. **If \(\vec{B} \) is everywhere perpendicular to a line, the line integral of \(\vec{B} \) is**

\[
\int_i^f \vec{B} \cdot dl = 0
\]

2. **If \(\vec{B} \) is everywhere tangent to a line of length \(l \) and has the same magnitude \(B \) at every point, then**

\[
\int_i^f \vec{B} \cdot dl = Bl
\]

Exercises 23-24
PROBLEM-SOLVING STRATEGIES are provided for each broad class of problems—problems characteristic of a chapter or group of chapters. The strategies follow a consistent four-step approach to help you develop confidence and proficient problem-solving skills: MODEL, VISUALIZE, SOLVE, ASSESS.

Dynamics problems

MODEL

Make simplifying assumptions.

VISUALIZE

Draw a pictorial representation.

- Show important points in the motion with a sketch, establish a coordinate system, define symbols, and identify what the problem is trying to find.
- Use a motion diagram to determine the object’s acceleration vector \overrightarrow{a}.
- Identify all forces acting on the object at this instant and show them on a free-body diagram.
- It’s OK to go back and forth between these steps as you visualize the situation.

SOLVE

The mathematical representation is based on Newton’s second law:

$$\overrightarrow{F}_{\text{net}} = \sum \overrightarrow{F} = ma$$

The vector sum of the forces is found directly from the free-body diagram. Depending on the problem, either

- Solve for the acceleration, then use kinematics to find velocities and positions; or
- Use kinematics to determine the acceleration, then solve for unknown forces.

ASSESS

Check that your result has the correct units, is reasonable, and answers the question.

Worked EXAMPLES illustrate good problem-solving practices through the consistent use of the four-step problem-solving approach and, where appropriate, the Tactics Box steps. The worked examples are often very detailed and carefully lead you through the reasoning behind the solution as well as the numerical calculations. A careful study of the reasoning will help you apply the concepts and techniques to the new and novel problems you will encounter in homework assignments and on exams.

NOTE paragraphs alert you to common mistakes and point out useful tips for tackling problems.

STOP TO THINK questions embedded in the chapter allow you to quickly assess whether you’ve understood the main idea of a section. A correct answer will give you confidence to move on to the next section. An incorrect answer will alert you to re-read the previous section.

Blue annotations on figures help you better understand what the figure is showing. They will help you to interpret graphs; translate between graphs, math, and pictures; grasp difficult concepts through a visual analogy; and develop many other important skills.

Pencil sketches provide practical examples of the figures you should draw yourself when solving a problem.

Pencil-sketch **FIGURE** showing a toboggan going down a hill and its energy bar chart.
Each chapter begins with a Chapter Preview, a visual outline of the chapter ahead with recommendations of important topics you should review from previous chapters. A few minutes spent with the Preview will help you organize your thoughts so as to get the most out of reading the chapter.

Schematic Chapter Summaries help you organize what you have learned into a hierarchy, from general principles (top) to applications (bottom). Side-by-side pictorial, graphical, textual, and mathematical representations are used to help you translate between these key representations.

Part Overviews and Summaries provide a global framework for what you are learning. Each part begins with an overview of the chapters ahead and concludes with a broad summary to help you to connect the concepts presented in that set of chapters. KNOWLEDGE STRUCTURE tables in the Part Summaries, similar to the Chapter Summaries, help you to see the forest rather than just the trees.

Now that you know more about what is expected of you, what can you expect of me? That’s a little trickier because the book is already written! Nonetheless, the book was prepared on the basis of what I think my students throughout the years have expected—and wanted—from their physics textbook. Further, I’ve listened to the extensive feedback I have received from thousands of students like you, and their teachers, who used the first and second editions of this book.

You should know that these course materials are based on extensive research about how students learn physics and the challenges they face. The effectiveness of many of the exercises has been demonstrated through extensive class testing. I’ve written the book in an informal style that I hope you will find appealing and that will encourage you to do the reading. And, finally, I have endeavored to make clear not only that physics, as a technical body of knowledge, is relevant to your profession but also that physics is an exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.
Detailed Contents

INTRODUCTION
Journey into Physics xxix

Part I
Newton’s Laws

OVERVIEW
Why Things Change 1

Chapter 1 Concepts of Motion 2
1.1 Motion Diagrams 3
1.2 The Particle Model 4
1.3 Position and Time 5
1.4 Velocity 10
1.5 Linear Acceleration 12
1.6 Motion in One Dimension 16
1.7 Solving Problems in Physics 19
1.8 Unit and Significant Figures 23
SUMMARY 28
QUESTIONS AND PROBLEMS 29

Chapter 2 Kinematics in One Dimension 33
2.1 Uniform Motion 34
2.2 Instantaneous Velocity 38
2.3 Finding Position from Velocity 42
2.4 Motion with Constant Acceleration 45
2.5 Free Fall 51
2.6 Motion on an Inclined Plane 54
2.7 Instantaneous Acceleration 58
SUMMARY 61
QUESTIONS AND PROBLEMS 62

Chapter 3 Vectors and Coordinate Systems 69
3.1 Vectors 70
3.2 Properties of Vectors 70
3.3 Coordinate Systems and Vector Components 74
3.4 Vector Algebra 77
SUMMARY 81
QUESTIONS AND PROBLEMS 82

Chapter 4 Kinematics in Two Dimensions 85
4.1 Acceleration 86
4.2 Two-Dimensional Kinematics 87
4.3 Projectile Motion 91
4.4 Relative Motion 95
4.5 Uniform Circular Motion 98
4.6 Velocity and Acceleration in Uniform Circular Motion 101
4.7 Nonuniform Circular Motion and Angular Acceleration 103
SUMMARY 108
QUESTIONS AND PROBLEMS 109
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Force and Motion 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Force 117</td>
</tr>
<tr>
<td>5.2</td>
<td>A Short Catalog of Forces 119</td>
</tr>
<tr>
<td>5.3</td>
<td>Identifying Forces 122</td>
</tr>
<tr>
<td>5.4</td>
<td>What Do Forces Do? A Virtual Experiment 123</td>
</tr>
<tr>
<td>5.5</td>
<td>Newton’s Second Law 126</td>
</tr>
<tr>
<td>5.6</td>
<td>Newton’s First Law 127</td>
</tr>
<tr>
<td>5.7</td>
<td>Free-Body Diagrams 130</td>
</tr>
</tbody>
</table>

Summary 133

Questions and Problems 134

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Dynamics I: Motion Along a Line 138</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Equilibrium 139</td>
</tr>
<tr>
<td>6.2</td>
<td>Using Newton’s Second Law 141</td>
</tr>
<tr>
<td>6.3</td>
<td>Mass, Weight, and Gravity 144</td>
</tr>
<tr>
<td>6.4</td>
<td>Friction 148</td>
</tr>
<tr>
<td>6.5</td>
<td>Drag 152</td>
</tr>
<tr>
<td>6.6</td>
<td>More Examples of Newton’s Second Law 155</td>
</tr>
</tbody>
</table>

Summary 159

Questions and Problems 160

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Newton’s Third Law 167</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Interacting Objects 168</td>
</tr>
<tr>
<td>7.2</td>
<td>Analyzing Interacting Objects 169</td>
</tr>
<tr>
<td>7.3</td>
<td>Newton’s Third Law 172</td>
</tr>
<tr>
<td>7.4</td>
<td>Ropes and Pulleys 177</td>
</tr>
<tr>
<td>7.5</td>
<td>Examples of Interacting-Object Problems 181</td>
</tr>
</tbody>
</table>

Summary 184

Questions and Problems 185

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Dynamics II: Motion in a Plane 191</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Dynamics in Two Dimensions 192</td>
</tr>
<tr>
<td>8.2</td>
<td>Uniform Circular Motion 193</td>
</tr>
<tr>
<td>8.3</td>
<td>Circular Orbits 199</td>
</tr>
<tr>
<td>8.4</td>
<td>Fictitious Forces 201</td>
</tr>
<tr>
<td>8.5</td>
<td>Nonuniform Circular Motion 205</td>
</tr>
</tbody>
</table>

Summary 209

Questions and Problems 210

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Impulse and Momentum 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Momentum and Impulse 221</td>
</tr>
<tr>
<td>9.2</td>
<td>Solving Impulse and Momentum Problems 223</td>
</tr>
<tr>
<td>9.3</td>
<td>Conservation of Momentum 226</td>
</tr>
<tr>
<td>9.4</td>
<td>Inelastic Collisions 232</td>
</tr>
<tr>
<td>9.5</td>
<td>Explosions 234</td>
</tr>
<tr>
<td>9.6</td>
<td>Momentum in Two Dimensions 236</td>
</tr>
</tbody>
</table>

Summary 238

Questions and Problems 239

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Energy 245</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>The Basic Energy Model 246</td>
</tr>
<tr>
<td>10.2</td>
<td>Kinetic Energy and Gravitational Potential Energy 247</td>
</tr>
<tr>
<td>10.3</td>
<td>A Closer Look at Gravitational Potential Energy 251</td>
</tr>
<tr>
<td>10.4</td>
<td>Restoring Forces and Hooke’s Law 255</td>
</tr>
<tr>
<td>10.5</td>
<td>Elastic Potential Energy 257</td>
</tr>
<tr>
<td>10.6</td>
<td>Energy Diagrams 261</td>
</tr>
<tr>
<td>10.7</td>
<td>Elastic Collisions 265</td>
</tr>
</tbody>
</table>

Summary 270

Questions and Problems 271

Part II Conservation Laws

Overview Why Some Things Don’t Change 219

Part Summary Newton’s Laws 216
Chapter 11 Work 278
 11.1 The Basic Energy Model Revisited 279
 11.2 Work and Kinetic Energy 280
 11.3 Calculating and Using Work 282
 11.4 The Work Done by a Variable Force 286
 11.5 Work and Potential Energy 288
 11.6 Finding Force from Potential Energy 290
 11.7 Thermal Energy 292
 11.8 Conservation of Energy 294
 11.9 Power 297
SUMMARY 301
QUESTIONS AND PROBLEMS 302
PART SUMMARY

Part III Applications of Newtonian Mechanics
OVERVIEW Power Over Our Environment 311

Chapter 12 Rotation of a Rigid Body 312
 12.1 Rotational Motion 313
 12.2 Rotation About the Center of Mass 314
 12.3 Rotational Energy 317
 12.4 Calculating Moment of Inertia 319
 12.5 Torque 321
 12.6 Rotational Dynamics 325
 12.7 Rotation About a Fixed Axis 327
 12.8 Static Equilibrium 330
 12.9 Rolling Motion 334
 12.10 The Vector Description of Rotational Motion 337
 12.11 Angular Momentum 340
SUMMARY 346
QUESTIONS AND PROBLEMS 347

Chapter 13 Newton’s Theory of Gravity 354
 13.1 A Little History 355
 13.2 Isaac Newton 356
 13.3 Newton’s Law of Gravity 357
 13.4 Little g and Big G 359
 13.5 Gravitational Potential Energy 362
 13.6 Satellite Orbits and Energies 365
SUMMARY 371
QUESTIONS AND PROBLEMS 372

Chapter 14 Oscillations 377
 14.1 Simple Harmonic Motion 378
 14.2 Simple Harmonic Motion and Circular Motion 381
 14.3 Energy in Simple Harmonic Motion 384
 14.4 The Dynamics of Simple Harmonic Motion 386
 14.5 Vertical Oscillations 389
 14.6 The Pendulum 391
 14.7 Damped Oscillations 395
 14.8 Driven Oscillations and Resonance 398
SUMMARY 400
QUESTIONS AND PROBLEMS 401

Chapter 15 Fluids and Elasticity 407
 15.1 Fluids 408
 15.2 Pressure 409
 15.3 Measuring and Using Pressure 415
 15.4 Buoyancy 419
 15.5 Fluid Dynamics 423
 15.6 Elasticity 430
SUMMARY 434
QUESTIONS AND PROBLEMS 435

PART SUMMARY
Applications of Newtonian Mechanics 440
Part IV Thermodynamics

Chapter 16 A Macroscopic Description of Matter 444
 16.1 Solids, Liquids, and Gases 445
 16.2 Atoms and Molecules 446
 16.3 Temperature 449
 16.4 Phase Changes 450
 16.5 Ideal Gases 452
 16.6 Ideal-Gas Processes 456

Chapter 17 Work, Heat, and the First Law of Thermodynamics 469
 17.1 It’s All About Energy 470
 17.2 Work in Ideal-Gas Processes 471
 17.3 Heat 475
 17.4 The First Law of Thermodynamics 478
 17.5 Thermal Properties of Matter 480
 17.6 Calorimetry 483
 17.7 The Specific Heats of Gases 485
 17.8 Heat-Transfer Mechanisms 491

Chapter 18 The Micro/Macro Connection 502
 18.1 Molecular Speeds and Collisions 503
 18.2 Pressure in a Gas 505
 18.3 Temperature 508
 18.4 Thermal Energy and Specific Heat 510

Chapter 19 Heat Engines and Refrigerators 526
 19.1 Turning Heat into Work 527
 19.2 Heat Engines and Refrigerators 529
 19.3 Ideal-Gas Heat Engines 534
 19.4 Ideal-Gas Refrigerators 538
 19.5 The Limits of Efficiency 540
 19.6 The Carnot Cycle 542

Chapter 20 Traveling Waves 560
 20.1 The Wave Model 561
 20.2 One-Dimensional Waves 563
 20.3 Sinusoidal Waves 566
 20.4 Waves in Two and Three Dimensions 572
 20.5 Sound and Light 574
 20.6 Power, Intensity, and Decibels 578
 20.7 The Doppler Effect 580

Part V Waves and Optics

Chapter 20 Traveling Waves 560
 20.1 The Wave Model 561
 20.2 One-Dimensional Waves 563
 20.3 Sinusoidal Waves 566
 20.4 Waves in Two and Three Dimensions 572
 20.5 Sound and Light 574
 20.6 Power, Intensity, and Decibels 578
 20.7 The Doppler Effect 580

SUMMARY 521
QUESTIONS AND PROBLEMS 522

Chapter 19 Heat Engines and Refrigerators 526
 19.1 Turning Heat into Work 527
 19.2 Heat Engines and Refrigerators 529
 19.3 Ideal-Gas Heat Engines 534
 19.4 Ideal-Gas Refrigerators 538
 19.5 The Limits of Efficiency 540
 19.6 The Carnot Cycle 542

SUMMARY 547
QUESTIONS AND PROBLEMS 548

Chapter 20 Traveling Waves 560
 20.1 The Wave Model 561
 20.2 One-Dimensional Waves 563
 20.3 Sinusoidal Waves 566
 20.4 Waves in Two and Three Dimensions 572
 20.5 Sound and Light 574
 20.6 Power, Intensity, and Decibels 578
 20.7 The Doppler Effect 580

SUMMARY 584
QUESTIONS AND PROBLEMS 585
Chapter 21 Superposition 591
 21.1 The Principle of Superposition 592
 21.2 Standing Waves 593
 21.3 Standing Waves on a String 595
 21.4 Standing Sound Waves and Musical Acoustics 599
 21.5 Interference in One Dimension 604
 21.6 The Mathematics of Interference 607
 21.7 Interference in Two and Three Dimensions 610
 21.8 Beats 615
SUMMARY 619
QUESTIONS AND PROBLEMS 620

Chapter 22 Wave Optics 627
 22.1 Light and Optics 628
 22.2 The Interference of Light 629
 22.3 The Diffraction Grating 634
 22.4 Single-Slit Diffraction 636
 22.5 Circular-Aperture Diffraction 640
 22.6 Interferometers 642
SUMMARY 647
QUESTIONS AND PROBLEMS 648

Chapter 23 Ray Optics 655
 23.1 The Ray Model of Light 656
 23.2 Reflection 658
 23.3 Refraction 661
 23.4 Image Formation by Refraction 666
 23.5 Color and Dispersion 667
 23.6 Thin Lenses: Ray Tracing 670
 23.7 Thin Lenses: Refraction Theory 676
 23.8 Image Formation With Spherical Mirrors 682
SUMMARY 687
QUESTIONS AND PROBLEMS 688

Chapter 24 Optical Instruments 694
 24.1 Lenses in Combination 695
 24.2 The Camera 696
 24.3 Vision 700
 24.4 Optical Systems that Magnify 703
 24.5 The Resolution of Optical Instruments 707
SUMMARY 711
QUESTIONS AND PROBLEMS 712

PART SUMMARY
Waves and Optics 716

Part VI Electricity and Magnetism

OVERVIEW Phenomena and Theories 719

Chapter 25 Electric Charges and Forces 720
 25.1 Developing a Charge Model 721
 25.2 Charge 725
 25.3 Insulators and Conductors 727
 25.4 Coulomb’s Law 731
 25.5 The Field Model 736
SUMMARY 743
QUESTIONS AND PROBLEMS 744

Chapter 26 The Electric Field 750
 26.1 Electric Field Models 751
 26.2 The Electric Field of Multiple Point Charges 752
 26.3 The Electric Field of a Continuous Charge Distribution 756
 26.4 The Electric Fields of Rings, Planes, and Spheres 760
 26.5 The Parallel-Plate Capacitor 764
 26.6 Motion of a Charged Particle in an Electric Field 767
 26.7 Motion of a Dipole in an Electric Field 770
SUMMARY 773
QUESTIONS AND PROBLEMS 774
About the Author

Randy Knight has taught introductory physics for over 30 years at Ohio State University and California Polytechnic University, where he is currently Professor of Physics. Professor Knight received a bachelor’s degree in physics from Washington University in St. Louis and a Ph.D. in physics from the University of California, Berkeley. He was a post-doctoral fellow at the Harvard-Smithsonian Center for Astrophysics before joining the faculty at Ohio State University. It was at Ohio State that he began to learn about the research in physics education that, many years later, led to this book.

Professor Knight’s research interests are in the field of lasers and spectroscopy, and he has published over 25 research papers. He also directs the environmental studies program at Cal Poly, where, in addition to introductory physics, he teaches classes on energy, oceanography, and environmental issues. When he’s not in the classroom or in front of a computer, you can find Randy hiking, sea kayaking, playing the piano, or spending time with his wife Sally and their seven cats.
Introduction

Journey into Physics

Said Alice to the Cheshire cat,
"Cheshire-Puss, would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to go," said the Cat.
"I don’t much care where—" said Alice.
"Then it doesn’t matter which way you go," said the Cat.
—Lewis Carroll, Alice in Wonderland

Have you ever wondered about questions such as

- Why is the sky blue?
- Why is glass an insulator but metal a conductor?
- What, really, is an atom?

These are the questions of which physics is made. Physicists try to understand the universe in which we live by observing the phenomena of nature—such as the sky being blue—and by looking for patterns and principles to explain these phenomena. Many of the discoveries made by physicists, from electromagnetic waves to nuclear energy, have forever altered the ways in which we live and think.

You are about to embark on a journey into the realm of physics. It is a journey in which you will learn about many physical phenomena and find the answers to questions such as the ones posed above. Along the way, you will also learn how to use physics to analyze and solve many practical problems.

As you proceed, you are going to see the methods by which physicists have come to understand the laws of nature. The ideas and theories of physics are not arbitrary; they are firmly grounded in experiments and measurements. By the time you finish this text, you will be able to recognize the evidence upon which our present knowledge of the universe is based.

Which Way Should We Go?

We are rather like Alice in Wonderland, here at the start of the journey, in that we must decide which way to go. Physics is an immense body of knowledge, and without specific goals it would not much matter which topics we study. But unlike Alice, we do have some particular destinations that we would like to visit.

The physics that provides the foundation for all of modern science and engineering can be divided into three broad categories:

- Particles and energy.
- Fields and waves.
- The atomic structure of matter.

A particle, in the sense that we’ll use the term, is an idealization of a physical object. We will use particles to understand how objects move and how they interact with each other. One of the most important properties of a particle or a collection of particles is energy. We will study energy both for its value in understanding physical processes and because of its practical importance in a technological society.
Particles are discrete, localized objects. Although many phenomena can be understood in terms of particles and their interactions, the long-range interactions of gravity, electricity, and magnetism are best understood in terms of fields, such as the gravitational field and the electric field. Rather than being discrete, fields spread continuously through space. Much of the second half of this book will be focused on understanding fields and the interactions between fields and particles.

Certainly one of the most significant discoveries of the past 500 years is that matter consists of atoms. Atoms and their properties are described by quantum physics, but we cannot leap directly into that subject and expect that it would make any sense. To reach our destination, we are going to have to study many other topics along the way—rather like having to visit the Rocky Mountains if you want to drive from New York to San Francisco. All our knowledge of particles and fields will come into play as we end our journey by studying the atomic structure of matter.

The Route Ahead

Here at the beginning, we can survey the route ahead. Where will our journey take us? What scenic vistas will we view along the way?

Parts I and II, Newton’s Laws and Conservation Laws, form the basis of what is called classical mechanics. Classical mechanics is the study of motion. (It is called classical to distinguish it from the modern theory of motion at the atomic level, which is called quantum mechanics.) The first two parts of this textbook establish the basic language and concepts of motion. Part I will look at motion in terms of particles and forces. We will use these concepts to study the motion of everything from accelerating sprinters to orbiting satellites. Then, in Part II, we will introduce the ideas of momentum and energy. These concepts—especially energy—will give us a new perspective on motion and extend our ability to analyze motion.

Part III, Applications of Newtonian Mechanics, will pause to look at four important applications of classical mechanics: Newton’s theory of gravity, rotational motion, oscillatory motion, and the motion of fluids. Only oscillatory motion is a prerequisite for later chapters. Your teacher may choose to cover some or all of the other chapters, depending upon the time available, but your study of Parts IV–VII will not be hampered if these chapters are omitted.

Part IV, Thermodynamics, extends the ideas of particles and energy to systems such as liquids and gases that contain vast numbers of particles. Here we will look for connections between the microscopic behavior of large numbers of atoms and the macroscopic properties of bulk matter. You will find that some of the properties of gases that you know from chemistry, such as the ideal gas law, turn out to be direct consequences of the underlying atomic structure of the gas. We will also expand the concept of energy and study how energy is transferred and utilized.
Waves are ubiquitous in nature, whether they be large-scale oscillations like ocean waves, the less obvious motions of sound waves, or the subtle undulations of light waves and matter waves that go to the heart of the atomic structure of matter. In Part V, Waves and Optics, we will emphasize the unity of wave physics and find that many diverse wave phenomena can be analyzed with the same concepts and mathematical language. Light waves are of special interest, and we will end this portion of our journey with an exploration of optical instruments, ranging from microscopes and telescopes to that most important of all optical instruments—your eye.

Part VI, Electricity and Magnetism, is devoted to the electromagnetic force, one of the most important forces in nature. In essence, the electromagnetic force is the "glue" that holds atoms together. It is also the force that makes this the "electronic age." We'll begin this part of the journey with simple observations of static electricity. Bit by bit, we'll be led to the basic ideas behind electrical circuits, to magnetism, and eventually to the discovery of electromagnetic waves.

Part VII is Relativity and Quantum Physics. We'll start by exploring the strange world of Einstein's theory of relativity, a world in which space and time aren't quite what they appear to be. Then we will enter the microscopic domain of atoms, where the behaviors of light and matter are at complete odds with what our common sense tells us is possible. Although the mathematics of quantum theory quickly gets beyond the level of this text, and time will be running out, you will see that the quantum theory of atoms and nuclei explains many of the things that you learned simply as rules in chemistry.

We will not have visited all of physics on our travels. There just isn't time. Many exciting topics, ranging from quarks to black holes, will have to remain unexplored. But this particular journey need not be the last. As you finish this text, you will have the background and the experience to explore new topics further in more advanced courses or for yourself.

With that said, let us take the first step.