James Walker obtained his Ph.D. in theoretical physics from the University of Washington in 1978. He subsequently served as a post-doc at the University of Pennsylvania, the Massachusetts Institute of Technology, and the University of California at San Diego before joining the physics faculty at Washington State University in 1983. Professor Walker’s research interests include statistical mechanics, critical phenomena, and chaos. His many publications on the application of renormalization group theory to systems ranging from absorbed monolayers to binary-fluid mixtures have appeared in Physical Review, Physical Review Letters, Physica, and a host of other publications. He has also participated in observations on the summit of Mauna Kea, looking for evidence of extrasolar planets.

Jim Walker likes to work with students at all levels, from judging elementary school science fairs to writing research papers with graduate students, and has taught introductory physics for many years. His enjoyment of this course and his empathy for students have earned him a reputation as an innovative, enthusiastic, and effective teacher. Jim’s educational publications include “Reappearing Phases” (Scientific American, May 1987) as well as articles in the American Journal of Physics and The Physics Teacher. In recognition of his contributions to the teaching of physics at Washington State University, Jim was named Boeing Distinguished Professor of Science and Mathematics Education for 2001–2003.

When he is not writing, conducting research, teaching, or developing new classroom demonstrations and pedagogical materials, Jim enjoys amateur astronomy, eclipse chasing, bird and dragonfly watching, photography, juggling, unicycling, boogie boarding, and kayaking. Jim is also an avid jazz pianist and organist. He has served as ballpark organist for a number of Class A minor league baseball teams, including the Bellingham Mariners, an affiliate of the Seattle Mariners, and the Salem-Keizer Volcanoes, an affiliate of the San Francisco Giants. He can play “Take Me Out to the Ball Game” in his sleep.
Reviewers

Hakan Armagan
Burke High School
Omaha, Nebraska

Michael Blair
Theodore Roosevelt High School
Des Moines, Indiana

Michael Brickell
Somerset High School
Galloway, Ohio

Mark Buesing
Libertyville High School
Libertyville, Illinois

Beverly Cannon
Highland Park High School
Dallas, Texas

Chris Chiaverina
New Trier High School
Winnetka, Illinois

Anthony Cutaia
White Plains High School
White Plains, New York

John Dell
Thomas Jefferson High School
for Science and Technology
Alexandria, Virginia

Jim Dillon
Madison High School
Mansfield, Ohio

Eleanor Dorso
Brentwood High School
Brentwood, New York

Stan Eisenstein
Centennial High School
Ellicott City, Maryland

Paul Gathright
Willis High School
Willis, Texas

Oommen George
San Jacinto College Central
Pasadena, Texas

Jack Giannattasio
A. L. Johnson High School
Clark, New Jersey

Bernard Gilroy
The Hun School of Princeton
Princeton, New Jersey

Marla Glover
Rossville High School
Rossville, Indiana

David Hees
Leon M. Goldstein High School
Brooklyn, New York

Thomas Henderson
Glenbrook South High School
Glencoe, Illinois

Charles Hibbard
Lowell High School
San Francisco, California

Lana Hood
Robert E. Lee High School
Tyler, Texas

Janie Horn
Cleveland High School
Cleveland, Texas

Robert Juranitch
University School of Milwaukee
Milwaukee, Wisconsin

Jackie Kelly
El Toro High School
Lake Forest, California

Boris Korsunsky
Weston High School
Weston, Massachusetts

James Maloy
Bethlehem Center High School
Fredericktown, Pennsylvania

David Martin
Masuk High School
Monroe, Connecticut

John McCann
Waynesboro Area Senior High School
Waynesboro, Pennsylvania

Theodore Neill
Senior High School
Harmony, Pennsylvania

Mary Norris
Stephenville High School
Stephenville, Texas

Matthew Ohlson
Green Local Schools
Green, Ohio

Steve Oppman
West High School
Oshkosh, Wisconsin

Chris Peoples
Sunny Hills High School
Fullerton, California

Pamela Perry
Lewiston High School
Lewiston, Maine

Susan Poland
Dysart High School
El Mirage, Arizona

Gloria Reche
Success Academy
Houston, Texas

Diane Rendeau
Deerfield High School
Deerfield, Illinois

Brian Shock
Powhatan High School
Powhatan, Virginia

Linda Singley
Greencastle-Antrim High School
Greencastle, Pennsylvania

Larry Stookey
Antigo High School
Antigo, Wisconsin

Martin Teachworth
La Jolla High School
La Jolla, California

Richard Thompson
Somerset High School
Somerset, Wisconsin

Blythe Tipping
Sylvania Southview High School
Sylvania, Ohio

Connie Wells
Pembroke Hill School
Kansas City, Kansas

Jeff Wetherhold
Parkland High School
Allentown, Pennsylvania

Matt Wilson
Holly High School
Holly, Michigan

Pearson Physics offers a new path to mastery—a “concepts first” approach that supports a superior, step-by-step problem solving process. In your new program, you’ll find:

• Example problems that build reasoning and problem-solving skills.

• Relevant connections that tie abstract concepts to everyday experiences and modern technologies.

• Rich lab explorations and study support that allow students to practice and reinforce essential skills.

• Cutting-edge technology that offers multiple options for interacting with—and mastering—the content.

The following pages showcase several key elements of Pearson Physics that will lead students to success.
A New Force in Physics

Pearson Physics offers a new path to mastery—
a “concepts first” approach that supports
a superior, step-by-step problem solving process.

In your new program, you’ll find:

• Example problems that build reasoning and problem-solving skills.
• Relevant connections that tie abstract concepts to everyday experiences and modern technologies.
• Rich lab explorations and study support that allow students to practice and reinforce essential skills.
• Cutting-edge technology that offers multiple options for interacting with—and mastering—the content.

The following pages showcase several key elements of Pearson Physics that will lead students to success.
Leading by Example

Every class contains a unique and diverse group of students. Pearson Physics supports each student’s unique learning style, offering all students a path to success. A key element of this approach is the program’s use of four distinct Example types, each with a particular purpose.

Quick Examples offer simple and concise solutions that model how newly introduced equations and units are used.

Conceptual Examples pose a thought-provoking question and then explain the logical reasoning and physics concepts needed to answer it.

Active Examples ask students to take an active role in solving the problem by thinking through the logic described on the left and verifying their answers on the right.

Guided Examples present a visual model of the physical situation and outline the key concepts that apply to it before proceeding to the detailed step-by-step solution.
Leading by Example

Every class contains a unique and diverse group of students. Pearson Physics supports each student’s unique learning style, offering all students a path to success. A key element of this approach is the program’s use of four distinct Example types, each with a particular purpose.

- **Quick Examples**
 - Offer simple and concise solutions that model how newly introduced equations and units are used.

- **Conceptual Examples**
 - Pose a thought-provoking question and then explain the logical reasoning and physics concepts needed to answer it.

- **Active Examples**
 - Ask students to take an active role in solving the problem by thinking through the logic described on the left and verifying their answers on the right.

- **Guided Examples**
 - Present a visual model of the physical situation and outline the key concepts that apply to it before proceeding to the detailed step-by-step solution.

Relevant Connections

Pearson Physics emphasizes the fact that physics applies to everything in your world, connecting ideas and concepts to everyday experience.

Physics & You features throughout the book explain the physics behind interesting technologies, the impact of technology on society, and the role of physics in various careers.

Physic & You: Technology passages in the discussion explain how various modern technologies make use of the physics concepts just learned.
Pearson Physics provides hands-on lab explorations in the text itself and through a separate Lab Manual. Extra study support features appear throughout the chapters when students need them most.

Physics Labs are traditional single-page lab activities that use easy to obtain materials.

Math HELP boxes in example problems guide students to extra math support material contained in the Math Review chapter.

Connecting Ideas features the important concepts from lesson to lesson and chapter to chapter, helping students see the bigger picture.

Short, simple, and interesting Inquiry Labs open each chapter and offer a chance to explore some of the chapter’s fundamental concepts.

Physics Labs and Study Tools

Inquiry Lab

Explore

1. Thoroughly clean and dry waxed microscope slides.
2. Place the ribbon oscillating drum in front of the microscope and observe the results.
3. Count the number of oscillations for waxed and unwaxed slides. What do you notice?

What thin film interferes?

Tutorials with Hints and Feedback

Mastering’s easy-to-assign tutorials provide students with individualized coaching.

• Hints and Feedback offer “scaffolded” instruction similar to what students would experience in an after-school study session.

• Hints often provide problem-solving strategies or break the main problem into simpler exercises.

• Wrong-answer-specific feedback gives students exactly the help they need by addressing their particular mistake without giving away the answer.
Mastering Physics®

The Mastering platform is the most effective and widely used online homework, tutorial, and assessment system for physics.

• Students interact with self-paced tutorials that focus on course objectives, provide individualized coaching, and respond to their progress.

• Instructors use the Mastering system to maximize class time with easy-to-assign, customizable, and automatically graded assessments that motivate students to learn outside of class and arrive prepared for lecture and lab.

Prelecture Questions
Assignable Prelecture Concept Questions encourage students to read the textbook so they’re more engaged in class.

Gradebook Diagnostics
The Gradebook Diagnostics screen provides instructors with weekly diagnostics. With a single click, charts identify the most difficult problems, vulnerable students, and grade distribution.

Tutorials with Hints and Feedback
Mastering’s easy-to-assign tutorials provide students with individualized coaching.

• Hints and Feedback offer “scaffolded” instruction similar to what students would experience in an after-school study session.

• Hints often provide problem-solving strategies or break the main problem into simpler exercises.

• Wrong-answer-specific feedback gives students exactly the help they need by addressing their particular mistake without giving away the answer.
Contents

1 Introduction to Physics 2

Big Idea Physics applies to everything.

- 1.1 Physics and the Scientific Method 3
- 1.2 Physics and Society 10
- 1.3 Units and Dimensions 15
- 1.4 Basic Math for Physics 23
- 1.5 Problem Solving in Physics 33

2 Introduction to Motion 42

Big Idea Motion can be represented by a position-time graph.

- 2.1 Describing Motion 43
- 2.2 Speed and Velocity 48
- 2.3 Position-Time Graphs 54
- 2.4 Equation of Motion 58

3 Acceleration and Accelerated Motion 72

Big Idea All objects in free fall move with the same constant acceleration.

- 3.1 Acceleration 73
- 3.2 Motion with Constant Acceleration 82
- 3.3 Position-Time Graphs for Constant Acceleration 92
- 3.4 Free Fall 97

4 Motion in Two Dimensions 112

Big Idea The horizontal and vertical motions of an object are independent of one another.

- 4.1 Vectors in Physics 113
- 4.2 Adding and Subtracting Vectors 121

4.3 Relative Motion 127
- 4.4 Projectile Motion 131

5 Newton’s Laws of Motion 150

Big Idea All motion is governed by Newton’s laws.

- 5.1 Newton’s Laws of Motion 151
- 5.2 Applying Newton’s Laws 161
- 5.3 Friction 170

6 Work and Energy 188

Big Idea Energy can change from one form to another, but the total amount of energy in the universe stays the same.

- 6.1 Work 189
- 6.2 Work and Energy 197
- 6.3 Conservation of Energy 206
- 6.4 Power 211

7 Linear Momentum and Collisions 228

Big Idea Momentum is conserved in all collisions, as long as external forces do not act.

- 7.1 Momentum 229
- 7.2 Impulse 234
- 7.3 Conservation of Momentum 242
- 7.4 Collisions 248

8 Rotational Motion and Equilibrium 266

Big Idea Forces can produce torques, and torques can produce rotation.

- 8.1 Describing Angular Motion 267
- 8.2 Rolling Motion and the Moment of Inertia 276
- 8.3 Torque 281
- 8.4 Static Equilibrium 290

9 Gravity and Circular Motion 306

Big Idea Gravity acts on everything in the universe.

- 9.1 Newton’s Law of Universal Gravity 307
- 9.2 Applications of Gravity 313
- 9.3 Circular Motion 320
- 9.4 Planetary Motion and Orbits 327
24 Quantum Physics 850
Big Idea At the atomic level, energy is quantized and particles have wavelike properties.
 24.1 Quantized Energy and Photons 851
 24.2 Wave-Particle Duality 864
 24.3 The Heisenberg Uncertainty Principle 868

25 Atomic Physics 882
Big Idea The wave properties of matter mean that the atomic-level world must be described in terms of probability.
 25.1 Early Models of the Atom 883
 25.2 Bohr's Model of the Hydrogen Atom 888
 25.3 The Quantum Physics of Atoms 897

26 Nuclear Physics 910
Big Idea The nuclei of atoms can release tremendous amounts of energy when part of their mass is converted to energy.
 26.1 The Nucleus 911
 26.2 Radioactivity 917
 26.3 Applications of Nuclear Physics 925
 26.4 Fundamental Forces and Elementary Particles 936

27 Relativity 948
Big Idea Nature behaves differently near the speed of light.
 27.1 The Postulates of Relativity 949
 27.2 The Relativity of Time and Length 953
 27.3 $E = mc^2$ 958
 27.4 General Relativity 962

Math Review R1
Appendices
 Appendix A Selected Answers R26
 Appendix B Additional Problems R37
 Appendix C Data Tables R60
 Appendix D Safety in the Physics Lab R72
Credits R93
Index R95
Program Components

MasteringPhysics*

MasteringPhysics® is the most effective and widely used online homework, tutorial, and assessment system for science courses. It delivers self-paced tutorials that focus on your course objectives, provides individualized coaching, and responds to each student's progress. The Mastering system helps teachers maximize class time with easy-to-assign, customizable, and automatically graded assessments that motivate students to learn.

Upon textbook purchase, students and teachers are granted access to MasteringPhysics with Pearson eText. Teachers can obtain preview or adoption access for MasteringPhysics in one of the following ways:

Preview Access
• Teachers can request preview access online by visiting PearsonSchool.com/Access_Request (choose option 2). Preview Access information will be sent to the teacher via email.

Adoption Access
• A Pearson Adoption Access Card, with codes and complete instructions, will be delivered with your textbook purchase (ISBN: 0-13-034391-9).
OR
• Visit PearsonSchool.com/Access_Request (choose option 3). Adoption access information will be sent to the teacher via email.

Students, ask your teacher for access.

For the Student

For the Teacher
Annotated Teacher’s Edition
Laboratory Manual, Teacher’s Edition
ExamView® CD-ROM
Classroom Resource DVD-ROM
Teacher’s Solutions Manual (electronic format only)

Some of the teacher supplements and resources for this text are available electronically to qualified adopters on the Instructor Resource Center (IRC). Upon adoption or to preview, please go to www.pearsonschool.com/access_request and select Instructor Resource Center. You will be required to complete a brief one-time registration subject to verification of educator status. Upon verification, access information and instructions will be sent to you via email. Once logged into the IRC, enter ISBN 0-13-137115-0 in the “Search our Catalog” box to locate resources.

Electronic teacher supplements are also available within the Instructor’s tab of MasteringPhysics.
INQUIRY LABS

Use readily available materials and easy procedures to produce reliable lab results.

How well do you give directions? 3
How do the cars move? 43
What does acceleration look like? 73
What does independence of motion mean? 113
What are action and reaction forces? 151
What factors affect energy transformations? 189
Which shoots the fastest and the farthest? 229
What does a torque feel like? 267
How can you make a cloud? 343
Do objects make characteristic sounds when dropped? 493
How do colors combine? 529
What do you see in a curved mirror? 565
What is total internal reflection? 597
What is thin-film interference? 637
What is the nature of electric force? 675
How can an electric field be made stronger? 705
How can you make a simple battery? 745
How can you detect a magnetic field? 783
How can you make a cloud? 817
What is blacker than black? 851
How did Rutherford discover the nucleus? 883
How can nuclear fusion be modeled? 911
Is velocity always relative? 949

PHYSICS LABS

Apply physics concepts and skills with these quick, effective hands-on opportunities.

Measuring Devices and Units 36
Position versus Time for a Constant-Velocity Car 64
Investigating Acceleration 103
Projectile Motion 142
Static and Kinetic Friction 178
Investigating Work on Inclined Planes 218
Momentum Conservation during a Collision 258
Investigating Torque and Equilibrium 298
Centripetal Force 334
Investigating Specific Heat Capacity 376
The Mechanical Equivalent of Heat 408
Investigating Hooke’s Law 444
Standing Waves on a Coiled Spring 484
Determining the Speed of Sound in Air 521
Polarization 555
Focal Length of a Concave Mirror 588
Investigating Refraction 627
An Application of Diffraction 666
Investigating Coulomb’s Law 696
Mapping an Electric Field 736
Ohm’s Law 773
Mapping Magnetic Fields 808
Electromagnetic Induction 842
Investigating Quanta 874
Spectra of Common Light Sources 904
Modeling Radioactive Decay 942
Time Dilation 969
Learn more about how physics applies to real-world situations. You’ll read about the impact physics has on society and technology, and survey some interesting careers that apply physics.

1 Technology and Society Atmospheric Modeling and Weather Prediction 35
2 Careers Climate Modelers 63
3 How Things Work Microbursts 102
4 Technology and Society Global Positioning Systems 141
5 Careers Earthquake Scientists and Engineers 177
6 Technology and Society Hybrid Vehicles 217
7 How Things Work Ballistic Pendulum 257
8 Careers Commercial Pilot 297
9 Technology and Society Tidal Energy 333
10 How Things Work Optical Pyrometer 375
11 How Things Work Cryogenics 407
12 Careers Meteorologist 443
13 How Things Work Tuned Mass Damper 483
14 How Things Work Sonar Mapping 520
15 Technology and Society Lighting Technologies and Energy Usage 554
16 How Things Work The Hubble Space Telescope (HST) 587
17 Careers Ophthalmology 626
18 How Things Work X-ray Diffraction 665
19 Careers Electrocardiogram Technician 695
20 How Things Work Faraday Cages 735
21 Careers Semiconductor Industry 772
22 How Things Work Particle Accelerators 807
23 How Things Work The Induction Motor 841
24 Careers Solar Installation 873
25 Technology and Society Hydrogen as Fuel 903
26 Careers Archeologist 941
27 How Things Work Miniature Nuclear Reactors 968

Learn how chapter content applies to a wide range of devices and technologies.

Cesium fountain atomic clock 18
Tracking hurricanes using computer models and atmospheric data 130
Antilock braking systems in cars 176
Bicycle helmets 240
Heartbeat recoil detectors 246
Bimetallic strips 352
Adiabatic heating 397
Body mass measurement device (BMMD) 460
Gravity maps 465
Active noise reduction (ANR) 478
Ultrasound 498
Pipe organs 506
Doppler radar 512
Pixels and additive primary colors 542
Photoelastic stress analysis 550
Digital micromirror devices (DMD) 568
Heads-up displays 573
Corner reflector 574
Binoculars 608
Charge-coupled devices (CCD) 619
Compound microscopes 620
Telescopes 621
Destructive interference 653
Pixels and pointillism 660
Endoscopic surgery 681
Lightning rods 716
Capacitance and plate separation 732
Energy released from a capacitor 732
Bolometers 753
Thermistors 754
Refrigerator magnets 786
Magnetic resonance imaging (MRI) 795
Mass spectrometer 801
Dynamic microphones 823
Magnetic braking 827
Household electrical circuits 836
The photoelectric effect 862
Scanning tunneling microscopes (STM) 871
Laser induced breakdown spectroscopy (LIBS) 887
Laser eye surgery 900
Lasers and holorams 900
Fluorescence 901
Controlled nuclear chain reaction 928
Carbon-14 dating 932
Positron-emission tomography (PET) 934
Guide to Examples

1. **QUICK** Example 1.1 | What's the Length in Meters?
 GUIDED Example 1.2 | A High-Volume Warehouse (Unit Conversion)
 ACTIVE Example 1.3 | Convert the Units of Speed
 GUIDED Example 1.4 | It's the Tortoise by a Hare (Significant Figures)
 QUICK Example 1.5 | What's the Mass?
 QUICK Example 1.6 | Which Digits Are Significant?
 ACTIVE Example 1.7 | Estimate the Speed of Hair Growth

2. **QUICK** Example 2.1 | What's the Distance?
 QUICK Example 2.2 | What's the Displacement?
 GUIDED Example 2.3 | The Kingfisher Takes a Plunge (Elapsed Time)
 CONCEPTUAL Example 2.4 | What Is the Average Speed?
 GUIDED Example 2.5 | Sprint Training (Average Velocity)
 QUICK Example 2.6 | What's the Equation of Motion?
 GUIDED Example 2.7 | Catch Me If You Can (Intersecting Motion)

3. **CONCEPTUAL** Example 3.1 | Accelerating or Not?
 QUICK Example 3.2 | What's the Acceleration?
 CONCEPTUAL Example 3.3 | Comparing Accelerations
 QUICK Example 3.4 | How Much Time to Get Up to Speed?
 GUIDED Example 3.5 | The Ferry Docks (Average Acceleration)
 QUICK Example 3.6 | What's the Velocity?
 QUICK Example 3.7 | What's the Velocity?
 GUIDED Example 3.8 | Put the Pedal to the Metal (Constant Acceleration)
 GUIDED Example 3.9 | Hit the Brakes! (Negative Acceleration)
 GUIDED Example 3.10 | Catching a Speeder (Graphing Multiple Motions)

4. **CONCEPTUAL** Example 3.11 | Does the Separation Change?
 GUIDED Example 3.12 | Do the Cannonball! (Free Fall)

5. **CONCEPTUAL** Example 4.1 | What's the Velocity?
 GUIDED Example 4.2 | Need a Lift? (Vector Components)
 GUIDED Example 4.3 | Skateboard Ramp (Vectors)
 CONCEPTUAL Example 4.4 | How Does the Angle Change?
 CONCEPTUAL Example 4.5 | Which Is the Vector Sum?
 ACTIVE Example 4.6 | Finding the Treasure
 ACTIVE Example 4.7 | Determining the Speed and Direction
 GUIDED Example 4.8 | Crossing a River (Relative Velocity)
 ACTIVE Example 4.9 | Determining the Position of a Dropped Ball
 QUICK Example 4.10 | What's the Speed in Each Direction?
 CONCEPTUAL Example 5.1 | Which String Breaks?
 QUICK Example 5.2 | What's the Force?
 CONCEPTUAL Example 5.3 | Tightening a Hammer
 GUIDED Example 5.4 | The Three Forces (Newton's Laws)
 GUIDED Example 5.5 | Tippy Canoe (Newton's Laws)
 ACTIVE Example 5.6 | Determine the Acceleration
 GUIDED Example 5.7 | Where's the Fire? (Newton's Laws)
 QUICK Example 5.8 | What's the Force?
Guide to Examples

<table>
<thead>
<tr>
<th>TYPE</th>
<th>EXAMPLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPTUAL</td>
<td>Example 5.9</td>
<td>Comparing Tensions</td>
<td>168</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 5.10</td>
<td>Find the Tension</td>
<td>169</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 5.11</td>
<td>Pass the Salt—Please (Kinetic Friction)</td>
<td>172</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 5.12</td>
<td>Stranger Than Friction (Static Friction)</td>
<td>174</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 5.13</td>
<td>Static or Kinetic?</td>
<td>175</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.1</td>
<td>Heading for the ER (Work)</td>
<td>191</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.2</td>
<td>Gravity Escape System (Work)</td>
<td>193</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 6.3</td>
<td>Rank the Work Done</td>
<td>194</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.4</td>
<td>Jamming with Rock Hero (Work)</td>
<td>195</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 6.5</td>
<td>What’s the Kinetic Energy?</td>
<td>199</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 6.6</td>
<td>What’s the Work?</td>
<td>199</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.7</td>
<td>Hit the Books (Work-Energy Theorem)</td>
<td>200</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 6.8</td>
<td>Determine the Final Speed</td>
<td>201</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 6.9</td>
<td>How Much Work Is Required?</td>
<td>202</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 6.10</td>
<td>What’s the Potential Energy?</td>
<td>203</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.11</td>
<td>Converting Food Energy to Mechanical Energy (Potential Energy)</td>
<td>204</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 6.12</td>
<td>What’s the Potential Energy?</td>
<td>205</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.13</td>
<td>Catching a Home Run (Conservation of Energy)</td>
<td>208</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 6.14</td>
<td>Comparing Final Speeds</td>
<td>209</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 6.15</td>
<td>Determine the Final Speed</td>
<td>210</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 6.16</td>
<td>Passing Fancy (Power)</td>
<td>214</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 6.17</td>
<td>Find the Maximum Speed</td>
<td>215</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 7.1</td>
<td>What’s the Momentum?</td>
<td>230</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 7.2</td>
<td>Duck, Duck, Goose (Total Momentum)</td>
<td>232</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 7.3</td>
<td>What’s the Impulse?</td>
<td>235</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 7.4</td>
<td>What’s the Force?</td>
<td>236</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 7.5</td>
<td>Rain versus Hail (Impulse-Momentum Theorem)</td>
<td>238</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 7.6</td>
<td>Lending a Hand</td>
<td>239</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 7.7</td>
<td>Tippy Canoe (Conservation of Momentum)</td>
<td>244</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 7.8</td>
<td>Momentum versus Kinetic Energy</td>
<td>247</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 7.9</td>
<td>How Much Kinetic Energy Is Lost?</td>
<td>250</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 7.10</td>
<td>Goal-Line Stand (Completely Inelastic Collision)</td>
<td>251</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 7.11</td>
<td>Analyzing a Traffic Accident (Completely Inelastic Collision)</td>
<td>253</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 7.12</td>
<td>Determine the Final Velocities</td>
<td>256</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 8.1</td>
<td>How Many Degrees?</td>
<td>269</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 8.2</td>
<td>What’s the Angular Velocity?</td>
<td>270</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 8.3</td>
<td>Playing a CD (Angular Speed)</td>
<td>272</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 8.4</td>
<td>Compare the Speeds</td>
<td>273</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 8.5</td>
<td>What’s the Stopping Time?</td>
<td>274</td>
</tr>
<tr>
<td>QUICK</td>
<td>Example 8.6</td>
<td>What’s the Angular Speed?</td>
<td>277</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 8.7</td>
<td>Which Object Wins the Race?</td>
<td>279</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 8.8</td>
<td>Find the Required Force</td>
<td>282</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 8.9</td>
<td>Torques to the Left and Torques to the Right (Torque)</td>
<td>285</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 8.10</td>
<td>A Fish Takes the Line (Angular Acceleration)</td>
<td>286</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 8.11</td>
<td>Which Block Lands First?</td>
<td>288</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>Example 8.12</td>
<td>Find the Forces</td>
<td>292</td>
</tr>
<tr>
<td>GUIDED</td>
<td>Example 8.13</td>
<td>A Well-Balanced Meal (Equilibrium)</td>
<td>294</td>
</tr>
<tr>
<td>CONCEPTUAL</td>
<td>Example 8.14</td>
<td>Compare the Masses</td>
<td>296</td>
</tr>
</tbody>
</table>
Guide to Examples

9 QUICK Example 9.1 | What’s the Force? 309
CONCEPTUAL Example 9.2 | Rank the Forces 310
GUIDED Example 9.3 | How Much Force Is with You? (Universal Gravitation) 310
GUIDED Example 9.4 | The Dependence of Gravity on Altitude (Earth’s Gravity) 315
QUICK Example 9.5 | What’s the Value of g on the Moon? 317
QUICK Example 9.6 | What’s the Mass of Earth? 318
CONCEPTUAL Example 9.7 | Choose the Path 321
GUIDED Example 9.8 | Rounding a Corner (Circular Motion) 322
ACTIVE Example 9.9 | Find the Normal Force 324
CONCEPTUAL Example 9.10 | Weighing In 324
CONCEPTUAL Example 9.11 | Comparing Orbital Speeds 329
ACTIVE Example 9.12 | Find the Altitude of the Orbit 331

10 GUIDED Example 10.1 | Temperature Conversions (Temperature Scales) 347
QUICK Example 10.2 | What’s the Kelvin Temperature? 348
CONCEPTUAL Example 10.3 | Comparing Expansions 350
QUICK Example 10.4 | What’s the Increase in Height? 351
CONCEPTUAL Example 10.5 | Expand or Contract? 353
CONCEPTUAL Example 10.6 | Warmer or Cooler? 355
GUIDED Example 10.7 | Stair Master (Mechanical Equivalent of Heat) 360
QUICK Example 10.8 | What Is the Temperature Change? 362
GUIDED Example 10.9 | Cooling Off (Calorimetry) 364
ACTIVE Example 10.10 | Find the Final Temperature 365
CONCEPTUAL Example 10.11 | Boiling Temperature 368
CONCEPTUAL Example 10.12 | Which Is Worse? 372
QUICK Example 10.13 | What’s the Thermal Energy? 373

11 GUIDED Example 11.1 | The Energetic Jogger (First Law of Thermodynamics) 388
GUIDED Example 11.2 | Heat into Work (Heat Engine) 391
CONCEPTUAL Example 11.3 | Engine Efficiency 392
QUICK Example 11.4 | How Much Work? 394
GUIDED Example 11.5 | Work Area (Pressure-Volume Graph) 395
GUIDED Example 11.6 | Work into Energy (Adiabatic Process) 398
CONCEPTUAL Example 11.7 | Comparing Efficiencies 402
ACTIVE Example 11.8 | Find the Temperature 403
GUIDED Example 11.9 | Melts in Your Hand (Entropy) 404

12 GUIDED Example 12.1 | Pressuring the Ball (Gauge Pressure) 417
GUIDED Example 12.2 | Take a Deep Breath (Ideal Gas Equation) 419
CONCEPTUAL Example 12.3 | Does the Number of Molecules Change? 420
ACTIVE Example 12.4 | Calculate the Amount of Air 421
QUICK Example 12.5 | What’s the Mass? 425
QUICK Example 12.6 | What’s the Pressure? 426
GUIDED Example 12.7 | Pressure and Depth (Density) 428
CONCEPTUAL Example 12.8 | Do the Bubbles Change in Size? 429
QUICK Example 12.9 | What’s the Force? 431
CONCEPTUAL Example 12.10 | How Is the Scale Reading Affected? 433
CONCEPTUAL Example 12.11 | Does the Water Level Change? 433
GUIDED Example 12.12 | Spray Nozzle (Continuity Equation) 436
CONCEPTUAL Example 12.13 | What Happens to the Ragtop Roof? 438
QUICK Example 12.14 | What’s the Force? 441
Guide to Examples

13 **QUICK** Example 13.1 | What Are the Frequency and the Period? 455
GUIDED Example 13.2 | Spring Time (Simple Harmonic Motion) 458
QUICK Example 13.3 | What's the Period? 459
ACTIVE Example 13.4 | Find the Period 461
QUICK Example 13.5 | What's the Period? 463
CONCEPTUAL Example 13.6 | Raise or Lower the Weight? 465
GUIDED Example 13.7 | Drop Time (Acceleration due to Gravity) 466
QUICK Example 13.8 | What's the Wavelength? 474
CONCEPTUAL Example 13.9 | What's the Amplitude? 477
GUIDED Example 13.10 | It's Fundamental (Standing Waves) 480

14 **CONCEPTUAL** Example 14.1 | How Far Away Is the Lightning? 495
GUIDED Example 14.2 | Wishing Well (Speed of Sound) 496
CONCEPTUAL Example 14.3 | Comparing String Frequencies 499
GUIDED Example 14.4 | Getting a Tune-up (Beats) 500
GUIDED Example 14.5 | Pop Music (Standing Waves) 504
QUICK Example 14.6 | What's the Length? 505
GUIDED Example 14.7 | Whistle Stop (Doppler Effect) 509
ACTIVE Example 14.8 | Determine the Frequency 511
QUICK Example 14.9 | What's the Intensity? 514
GUIDED Example 14.10 | The Power of Song (Sound Intensity) 516
QUICK Example 14.11 | What's the Intensity? 517
CONCEPTUAL Example 14.12 | Does the Intensity Change? 518

15 **QUICK** Example 15.1 | How Long Does It Take? 530
GUIDED Example 15.2 | Fizeau's Results (Speed of Light) 532

QUICK Example 15.3 | What's the Change in Frequency? 533
GUIDED Example 15.4 | Roses Are Red, Violets Are Violet (Electromagnetic Spectrum) 538
CONCEPTUAL Example 15.5 | How Many of Each Color? 542
QUICK Example 15.6 | What's the Intensity? 547
GUIDED Example 15.7 | Analyze This (Polarization) 548
CONCEPTUAL Example 15.8 | Is the Light Completely Blocked? 549

16 **CONCEPTUAL** Example 16.1 | How Does the Direction Change? 567
GUIDED Example 16.2 | Reflecting on a Flower (Reflection) 571
CONCEPTUAL Example 16.3 | How Tall Is the Mirror? 572
GUIDED Example 16.4 | Two-Dimensional Corner Reflector (Reflection) 573
CONCEPTUAL Example 16.5 | Which Mirror Works Best? 577
GUIDED Example 16.6 | Image Formation (Concave Mirrors) 579
CONCEPTUAL Example 16.7 | Concave or Convex? 580
QUICK Example 16.8 | Where's the Image? 582
QUICK Example 16.9 | Where's the Image? 582
GUIDED Example 16.10 | Checking It Twice (Magnification) 584
ACTIVE Example 16.11 | Determine the Magnification and the Focal Length 585

17 **QUICK** Example 17.1 | What's the Travel Time? 598
QUICK Example 17.2 | What's the Angle of Refraction? 600
GUIDED Example 17.3 | Sitting on a Dock of the Bay (Refraction) 602
CONCEPTUAL Example 17.4 | Which Way Is the Beam Refracted? 604
GUIDED Example 17.5 | Light Totally Reflected (Total Internal Reflection) 607
GUIDED Example 17.6 | Prisms (Dispersion) 609
Guide to Examples

CONCEPTUAL Example 17.7 | Is the Focal Length Affected? 615

GUIDED Example 17.8 | Object Distance and Focal Length (Convex Lenses) 617

ACTIVE Example 17.9 | Find the Displacement of the Lens 619

CONCEPTUAL Example 17.10 | Which Glasses Should They Use? 625

18 **GUIDED** Example 18.1 | Two May Not Be Better Than One (Interference) 639

QUICK Example 18.2 | What Are the Angles? 644

GUIDED Example 18.3 | Blue Light Special (Two-Slit Interference) 645

CONCEPTUAL Example 18.4 | Is the Fringe Dark or Bright? 649

GUIDED Example 18.5 | Splitting Hairs (Air Wedge) 649

GUIDED Example 18.6 | Red Light Special (Thin-Film Interference) 652

QUICK Example 18.7 | What's the Wavelength? 656

GUIDED Example 18.8 | Exploring the Dark Side (Single-Slit Diffraction) 657

QUICK Example 18.9 | What’s the Angle? 659

QUICK Example 18.10 | What’s the Spacing? 663

19 **QUICK** Example 19.1 | How Much Charge? 678

CONCEPTUAL Example 19.2 | Does the Mass Change? 680

CONCEPTUAL Example 19.3 | Where Do They Collide? 685

GUIDED Example 19.4 | The Bohr Orbit (Electric Force) 687

QUICK Example 19.5 | What’s the Force? 688

GUIDED Example 19.6 | Total Force (Electric Force) 691

CONCEPTUAL Example 19.7 | Comparing Forces 692

ACTIVE Example 19.8 | Find the Force Exerted by a Charged Sphere 693

20 **GUIDED** Example 20.1 | Force Field (Electric Force) 707

QUICK Example 20.2 | What’s the Electric Field? 709

CONCEPTUAL Example 20.3 | What’s the Sign? 711

GUIDED Example 20.4 | Superposition in the Field (Electric Field) 712

CONCEPTUAL Example 20.5 | Do They Intersect? 714

QUICK Example 20.6 | What’s the Change in Electric Potential Energy? 720

GUIDED Example 20.7 | Plates at Different Potentials (Electric Fields and Potentials) 722

CONCEPTUAL Example 20.8 | How Does the Field Change? 731

GUIDED Example 20.10 | A Peak or a Valley? 727

QUICK Example 20.11 | What’s the Charge? 729

GUIDED Example 20.12 | All Charged Up (Capacitors) 730

CONCEPTUAL Example 20.13 | How Does the Field Change? 731

GUIDED Example 20.14 | Delivering a Shock to the System (Capacitors) 733

21 **CONCEPTUAL** Example 21.1 | Comparing Currents 746

GUIDED Example 21.2 | Mega Blaster (Electric Current) 747

ACTIVE Example 21.3 | Determine the Charge and the Work 749

QUICK Example 21.4 | What’s the Current? 751

GUIDED Example 21.5 | Three Resistors in Series (Series Circuit) 758

GUIDED Example 21.6 | Three Resistors in Parallel (Parallel Circuit) 761

GUIDED Example 21.7 | Combination Special (Combination Circuit) 763

QUICK Example 21.8 | What’s the Current? 766

CONCEPTUAL Example 21.9 | Comparing Currents and Resistances 767

GUIDED Example 21.10 | Heated Resistance (Power Dissipation) 768

CONCEPTUAL Example 21.11 | Brightness of the Lights 769
Guide to Examples

GUIDED Example 21.12	Your Goose Is Cooked (Energy Cost)	770
22 CONCEPTUAL Example 22.1	Can They Cross?	785
CONCEPTUAL Example 22.2	Which Direction?	790
QUICK Example 22.3	What's the Magnetic Field?	791
ACTIVE Example 22.4	Determine the Magnetic Field	791
CONCEPTUAL Example 22.5	Double the Loops or the Length?	794
GUIDED Example 22.6	The Care of a Solenoid (Solenoids)	794
GUIDED Example 22.7	A Tale of Two Charges (Magnetic Force)	797
CONCEPTUAL Example 22.8	Positive, Negative, or Zero?	799
QUICK Example 22.9	What's the Speed?	801
GUIDED Example 22.10	Uranium Separation (Circular Paths)	802
GUIDED Example 22.11	Magnetic Levity (Magnetic Force)	804
23 GUIDED Example 23.1	A System in Flux (Magnetic Flux)	820
CONCEPTUAL Example 23.2	Does the Magnetic Flux Change?	821
GUIDED Example 23.3	Bar Magnet Induction (Induced emf and Current)	822
CONCEPTUAL Example 23.4	Falling Magnets	824
CONCEPTUAL Example 23.5	The Direction of Induced Current	826
GUIDED Example 23.6	Generator Next (Electric Generator)	829
QUICK Example 23.7	What's the Maximum Voltage?	833
GUIDED Example 23.8	A Resistor Circuit (Average AC Power)	834
ACTIVE Example 23.9	Determine the Number of Loops	839
24 QUICK Example 24.1	What Is the Temperature?	854
GUIDED Example 24.2	Quantum Numbers (Quantum Energy)	856
QUICK Example 24.3	What's the Energy?	858
GUIDED Example 24.4	When Oxygens Split (Photons)	858
QUICK Example 24.5	What's the Cutoff Frequency?	860
GUIDED Example 24.6	White Light on Sodium (Photoelectric Effect)	861
ACTIVE Example 24.7	Determine the Speed and the Wavelength	865
CONCEPTUAL Example 24.8	More Certain or Less?	870
25 QUICK Example 25.1	What's the Radius?	890
QUICK Example 25.2	What's the Energy?	891
GUIDED Example 25.3	The Hydrogen Lineup (Hydrogen Spectrum)	892
ACTIVE Example 24.7	Determine the Frequency	895
CONCEPTUAL Example 25.4	Finding the Electron	898
26 QUICK Example 26.1	What's the Symbol?	913
CONCEPTUAL Example 26.2	Identify the Radiation	918
GUIDED Example 26.3	Alpha Decay of Uranium-238 (Alpha Decay)	920
GUIDED Example 26.4	Beta Decay of Carbon-14 (Beta Decay)	922
GUIDED Example 26.5	A Fission Reaction of Uranium-235 (Fission)	926
GUIDED Example 26.6	You Don't Look a Day over 5000 (Carbon-14 Dating)	933
27 QUICK Example 27.1	What's the Elapsed Time?	955
QUICK Example 27.2	What's the Length?	957
QUICK Example 27.3	What's the Rest Energy?	959
CONCEPTUAL Example 27.4	Compare the Mass	960
Math Review GUIDED Example 1	Highway to Heaven (Using Trig Functions)	R21