Nivaldo Tro is a professor of chemistry at Westmont College in Santa Barbara, California, where he has been a faculty member since 1990. He received his Ph.D. in chemistry from Stanford University for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultrahigh vacuum. He then went on to the University of California at Berkeley, where he did postdoctoral research on ultrafast reaction dynamics in solution. Since coming to Westmont, Professor Tro has been awarded grants from the American Chemical Society Petroleum Research Fund, from the Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin adlayer films adsorbed on dielectric surfaces. He has been honored as Westmont’s Outstanding Teacher of the Year three times and has also received the college’s Outstanding Researcher of the Year award. Professor Tro lives in Santa Barbara with his wife, Ann, and their four children, Michael, Ali, Kyle, and Kaden. In his leisure time, Professor Tro enjoys mountain biking, surfing, and being outdoors with his family.
Brief Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Chemical World</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Measurement and Problem Solving</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Matter and Energy</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Atoms and Elements</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>Molecules and Compounds</td>
<td>132</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Composition</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>Chemical Reactions</td>
<td>206</td>
</tr>
<tr>
<td>8</td>
<td>Quantities in Chemical Reactions</td>
<td>248</td>
</tr>
<tr>
<td>9</td>
<td>Electrons in Atoms and the Periodic Table</td>
<td>284</td>
</tr>
<tr>
<td>10</td>
<td>Chemical Bonding</td>
<td>324</td>
</tr>
<tr>
<td>11</td>
<td>Gases</td>
<td>358</td>
</tr>
<tr>
<td>12</td>
<td>Liquids, Solids, and Intermolecular Forces</td>
<td>408</td>
</tr>
<tr>
<td>13</td>
<td>Solutions</td>
<td>444</td>
</tr>
<tr>
<td>14</td>
<td>Acids and Bases</td>
<td>484</td>
</tr>
<tr>
<td>15</td>
<td>Chemical Equilibrium</td>
<td>526</td>
</tr>
<tr>
<td>16</td>
<td>Oxidation and Reduction</td>
<td>572</td>
</tr>
<tr>
<td>17</td>
<td>Radioactivity and Nuclear Chemistry</td>
<td>608</td>
</tr>
<tr>
<td>18</td>
<td>Organic Chemistry</td>
<td>640</td>
</tr>
<tr>
<td>19</td>
<td>Biochemistry</td>
<td>694</td>
</tr>
<tr>
<td></td>
<td>Appendix: Mathematics Review</td>
<td>MR-1</td>
</tr>
<tr>
<td></td>
<td>Answers to Odd-Numbered Exercises</td>
<td>A-1</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>G-1</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>C-1</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>I-1</td>
</tr>
</tbody>
</table>
Contents

Preface xix

The Chemical World 2

1.1 Sand and Water 3
1.2 Chemicals Compose Ordinary Things 4
1.3 The Scientific Method: How Chemists Think EVERYDAY CHEMISTRY Combustion and the Scientific Method 5
1.4 Analyzing and Interpreting Data Identifying Patterns in Data 8 Interpreting Graphs 9
1.5 A Beginning Chemist: How to Succeed Self-Assessment Quiz 10
Key Terms 11 Exercises 12 Answers to Skillbuilder Exercises 13 Answers to Conceptual Checkpoints 13

Measurement and Problem Solving 14

2.1 The Metric Mix-up: A $125 Million Unit Error 15
2.2 Scientific Notation: Writing Large and Small Numbers 15
2.3 Significant Figures: Writing Numbers to Reflect Precision Counting Significant Figures 20 Exact Numbers 20 CHEMISTRY IN THE MEDIA The COBE Satellite and Very Precise Measurements That Illuminate Our Cosmic Past 21
2.4 Significant Figures in Calculations Multiplication and Division 22 Rounding 22 Addition and Subtraction 23 Calculations Involving Both Multiplication/Division and Addition/Subtraction 24
2.5 The Basic Units of Measurement The Base Units 26 Prefix Multipliers 27 Derived Units 28
2.6 Problem Solving and Unit Conversion Converting Between Units 29 General Problem-Solving Strategy 31
2.7 Solving Multistep Unit Conversion Problems 33
2.8 Unit Conversion in Both the Numerator and Denominator 35
2.9 Units Raised to a Power CHEMISTRY AND HEALTH Drug Dosage 37
2.10 Density Calculating Density 40 Density as a Conversion Factor 41 CHEMISTRY AND HEALTH Density, Cholesterol, and Heart Disease 42
2.11 Numerical Problem-Solving Strategies and the Solution Map Self-Assessment Quiz 43
Key Terms 51 Exercises 51 Answers to Skillbuilder Exercises 59 Answers to Conceptual Checkpoints 59
3 Matter and Energy 60

3.1 In Your Room 61
3.2 What Is Matter? 62
3.3 Classifying Matter According to Its State: Solid, Liquid, and Gas 63
3.4 Classifying Matter According to Its Composition: Elements, Compounds, and Mixtures 64
3.5 Differences in Matter: Physical and Chemical Properties 67
3.6 Changes in Matter: Physical and Chemical Changes 69
3.7 Conservation of Mass: There Is No New Matter 71
3.8 Energy 72
3.9 Energy and Chemical and Physical Change 75
3.10 Temperature: Random Motion of Molecules and Atoms 76

3.11 Temperature Changes: Heat Capacity 80
3.12 Energy and Heat Capacity Calculations 81

Self-Assessment Quiz
Key Terms
Exercises
Answers to Skillbuilder Exercises
Answers to Conceptual Checkpoints

4 Atoms and Elements 98

4.1 Experiencing Atoms at Tiburon 99
4.2 Indivisible: The Atomic Theory 100
4.3 The Nuclear Atom 101
4.4 The Properties of Protons, Neutrons, and Electrons 103
4.5 Elements: Defined by Their Numbers of Protons 105
4.6 Looking for Patterns: The Periodic Law and the Periodic Table 107
4.7 Ions: Losing and Gaining Electrons 112
4.8 Isotopes: When the Number of Neutrons Varies 115
4.9 Atomic Mass: The Average Mass of an Element’s Atoms 117

Self-Assessment Quiz
Key Terms
Exercises
Answers to Skillbuilder Exercises
Answers to Conceptual Checkpoints

5 Molecules and Compounds 132

5.1 Sugar and Salt 133
5.2 Compounds Display Constant Composition 134
5.3 Chemical Formulas: How to Represent Compounds 135

Self-Assessment Quiz
Key Terms
Exercises
Answers to Skillbuilder Exercises
Answers to Conceptual Checkpoints
5.4 A Molecular View of Elements and Compounds 139
 Atomic Elements 139
 Molecular Elements 139
 Molecular Compounds 140
 Ionic Compounds 140

5.5 Writing Formulas for Ionic Compounds 142
 Writing Formulas for Ionic Compounds Containing Only Monoatomic Ions 142
 Writing Formulas for Ionic Compounds Containing Polyatomic Ions 143

5.6 Nomenclature: Naming Compounds 144

5.7 Naming Ionic Compounds 144
 Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 145
 Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Type of Cation 146
 Naming Ionic Compounds Containing a Polyatomic Ion 147

EVERYDAY CHEMISTRY Polyatomic Ions 148

5.8 Naming Molecular Compounds 149

5.9 Naming Acids 150
 Naming Binary Acids 150
 Naming Oxyacids 151

5.10 Nomenclature Summary 152
 Ionic Compounds 152
 Molecular Compounds 152
 Acids 153

5.11 Formula Mass: The Mass of a Molecule or Formula Unit 153

Self-Assessment Quiz 154
Key Terms 158
Exercises 159
Answers to Skillbuilder Exercises 166
Answers to Conceptual Checkpoints 167

6 Chemical Composition 168

6.1 How Much Sodium? 169

6.2 Counting Nails by the Pound 170

6.3 Counting Atoms by the Gram 171
 Converting between Moles and Number of Atoms 171
 Converting between Grams and Moles of an Element 172
 Converting between Grams of an Element and Number of Atoms 175

6.4 Counting Molecules by the Gram 176
 Converting between Grams and Moles of a Compound 176

6.5 Chemical Formulas as Conversion Factors 178
 Converting between Grams of a Compound and Number of Molecules 178
 Converting between Moles of a Compound and Moles of a Constituent Element 180
 Converting between Grams of a Compound and Grams of a Constituent Element 181

6.6 Mass Percent Composition of Compounds 183

6.7 Mass Percent Composition from a Chemical Formula 184

CHEMISTRY AND HEALTH Fluoridation of Drinking Water 186

6.8 Calculating Empirical Formulas for Compounds 186
 Calculating an Empirical Formula from Experimental Data 187

6.9 Calculating Molecular Formulas for Compounds 189

Self-Assessment Quiz 191
Key Terms 197
Exercises 197
Answers to Skillbuilder Exercises 205
Answers to Conceptual Checkpoints 205
7 Chemical Reactions 206

7.1 Grade School Volcanoes, Automobiles, and Laundry Detergents 207
7.2 Evidence of a Chemical Reaction 208
7.3 The Chemical Equation 211
7.4 How to Write Balanced Chemical Equations 213
7.5 Aqueous Solutions and Solubility: Compounds Dissolved in Water 216
Aqueous Solutions 216
Solubility 217
7.6 Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid 220
7.7 Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations 223
7.8 Acid–Base and Gas Evolution Reactions 225
Acid–Base (Neutralization) Reactions 225
Gas Evolution Reactions 226
CHEMISTRY AND HEALTH Neutralizing Excess Stomach Acid 228
7.9 Oxidation–Reduction Reactions 228
7.10 Classifying Chemical Reactions 230
Classifying Chemical Reactions by What Atoms Do 231
Classification Flowchart 233

8 Quantities in Chemical Reactions 248

8.1 Climate Change: Too Much Carbon Dioxide 249
8.2 Making Pancakes: Relationships between Ingredients 250
8.3 Making Molecules: Mole-to-Mole Conversions 251
8.4 Making Molecules: Mass-to-Mass Conversions 253
8.5 More Pancakes: Limiting Reactant, Theoretical Yield, and Percent Yield 257
8.6 Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants 260
8.7 Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction 265
Sign of \(\Delta H_{\text{rxn}}\) 265
EVERYDAY CHEMISTRY Bunsen Burners 266
Stoichiometry of \(\Delta H_{\text{rxn}}\) 266
Self-Assessment Quiz 268
Key Terms 273
Exercises 274
Answers to Skillbuilder Exercises 283
Answers to Conceptual Checkpoints 283

9 Electrons in Atoms and the Periodic Table 284

9.1 Blimps, Balloons, and Models of the Atom 285
9.2 Light: Electromagnetic Radiation 286
9.3 The Electromagnetic Spectrum 288
CHEMISTRY AND HEALTH Radiation Treatment for Cancer 290
9.4 The Bohr Model: Atoms with Orbits 291
9.5 The Quantum-Mechanical Model: Atoms with Orbitals 294
Baseball Paths and Electron Probability Maps 294
From Orbits to Orbitals 295
9.6 Quantum-Mechanical Orbitals and Electron Configurations 295
Quantum-Mechanical Orbitals 296
Electron Configurations: How Electrons Occupy Orbitals 298
9.7 Electron Configurations and the Periodic Table 302
9.8 The Explanatory Power of the Quantum-Mechanical Model 305
9.9 Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character 307

CHEMISTRY AND HEALTH Pumping Ions: Atomic Size and Nerve Impulses 309
Ionization Energy 309
Metallic Character 311

Self-Assessment Quiz 313
Key Terms 316
Exercises 316
Answers to Skillbuilder Exercises 323
Answers to Conceptual Checkpoints 323

10 Chemical Bonding 324

10.1 Bonding Models and AIDS Drugs 325
10.2 Representing Valence Electrons with Dots 326
10.3 Lewis Structures of Ionic Compounds:
 Electrons Transferred 327
10.4 Covalent Lewis Structures: Electrons Shared
 Single Bonds 328
 Double and Triple Bonds 329
10.5 Writing Lewis Structures for Covalent Compounds
 Writing Lewis Structures for Polyatomic Ions
 Exceptions to the Octet Rule 332
10.6 Resonance: Equivalent Lewis Structures for the Same Molecule 334
10.7 Predicting the Shapes of Molecules
 Representing Molecular Geometries on Paper 339

CHEMISTRY AND HEALTH Fooled by Molecular Shape 340

10.8 Electronegativity and Polarity: Why Oil and Water Don’t Mix
 Electronegativity 341
 Polar Bonds and Polar Molecules 343

EVERYDAY CHEMISTRY How Soap Works 345

Self-Assessment Quiz 346
Key Terms 349
Exercises 349
Answers to Skillbuilder Exercises 357
Answers to Conceptual Checkpoints 357

11 Gases 358

11.1 Extra-Long Straws 359
11.2 Kinetic Molecular Theory: A Model for Gases 361
11.3 Pressure: The Result of Constant Molecular Collisions 362

Pressure Units 363
Pressure Unit Conversion 364

11.4 Boyle’s Law: Pressure and Volume 365
EVERYDAY CHEMISTRY Airplane Cabin Pressurization 366
EVERYDAY CHEMISTRY Extra-long Snorkels 370

11.5 Charles’s Law: Volume and Temperature 370
11.6 The Combined Gas Law: Pressure, Volume, and Temperature 374
11.7 Avogadro’s Law: Volume and Moles 376
11.8 The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 Determining Molar Mass of a Gas from the Ideal Gas Law 382
 Ideal and Nonideal Gas Behavior 384

11.9 Mixtures of Gases
 Partial Pressure and Physiology 386
 Collecting Gases over Water 387

11.10 Gases in Chemical Reactions 388
 Molar Volume at Standard Temperature and Pressure 391

CHEMISTRY IN THE ENVIRONMENT Air Pollution 393

Self-Assessment Quiz 394
Key Terms 398
Exercises 399
Answers to Skillbuilder Exercises 407
Answers to Conceptual Checkpoints 407
12 Liquids, Solids, and Intermolecular Forces

12.1 Spherical Water

12.2 Properties of Liquids and Solids

12.3 Intermolecular Forces in Action: Surface Tension and Viscosity

- Surface Tension
- Viscosity

12.4 Evaporation and Condensation

- Boiling
- Energetics of Evaporation and Condensation

12.5 Melting, Freezing, and Sublimation

- Energetics of Melting and Freezing
- Heat of Fusion

12.6 Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion–Dipole

- Dispersion Force
- Dipole–Dipole Force

12.7 Types of Crystalline Solids: Molecular, Ionic, and Atomic

- Molecular Solids
- Ionic Solids
- Atomic Solids

12.8 Water: A Remarkable Molecule

CHEMISTRY AND HEALTH

- Hydrogen Bonding in DNA

CHEMISTRY IN THE ENVIRONMENT

- Water Pollution and the Flint River Water Crisis

13 Solutions

13.1 Tragedy in Cameroon

13.2 Solutions: Homogeneous Mixtures

13.3 Solutions of Solids Dissolved in Water:

- How to Make Rock Candy
- Solubility and Saturation
- Electrolyte Solutions: Dissolved Ionic Solids
- How Solubility Varies with Temperature

13.4 Solutions of Gases in Water: How Soda Pop Gets Its Fizz

13.5 Specifying Solution Concentration:

- Mass Percent
- Using Mass Percent in Calculations

13.6 Specifying Solution Concentration: Molarity

- Using Molarity in Calculations
- Ion Concentrations

13.7 Solution Dilution

13.8 Solution Stoichiometry

13.9 Freezing Point Depression and Boiling Point Elevation: Making Water Freeze Colder and Boil Hotter

EVERYDAY CHEMISTRY

- Antifreeze in Frogs
- Boiling Point Elevation

13.10 Osmosis: Why Drinking Saltwater Causes Dehydration

CHEMISTRY AND HEALTH

- Solutions in Medicine

Self-Assessment Quiz

Key Terms

Exercises

Answers to Skillbuilder Exercises

Answers to Conceptual Checkpoints
16 Oxidation and Reduction 572

16.1 The End of the Internal Combustion Engine? 573
16.2 Oxidation and Reduction: Some Definitions 574
16.3 Oxidation States: Electron Bookkeeping 577
 EVERYDAY CHEMISTRY The Bleaching of Hair 579
16.4 Balancing Redox Equations 580
 CHEMISTRY IN THE ENVIRONMENT Photosynthesis and Respiration: Energy for Life 585
16.5 The Activity Series: Predicting Spontaneous Redox Reactions 585
 The Activity Series of Metals 586
 Predicting Whether a Metal Will Dissolve in Acid 588
16.6 Batteries: Using Chemistry to Generate Electricity 589
 Dry-Cell Batteries 591
 Lead-Acid Storage Batteries 592
 Fuel Cells 592
16.7 Electrolysis: Using Electricity to Do Chemistry 593
16.8 Corrosion: Undesirable Redox Reactions 594
 EVERYDAY CHEMISTRY The Fuel-Cell Breathalyzer 595
Self-Assessment Quiz 596
Key Terms 600
Exercises 600
Answers to Skillbuilder Exercises 607
Answers to Conceptual Checkpoints 607

17 Radioactivity and Nuclear Chemistry 608

17.1 Diagnosing Appendicitis 609
17.2 The Discovery of Radioactivity 610
17.3 Types of Radioactivity: Alpha, Beta, and Gamma Decay 611
 Alpha (\(\alpha\)) Radiation 612
 Beta (\(\beta\)) Radiation 614
 Gamma (\(\gamma\)) Radiation 615
 Positron Emission 616
17.4 Detecting Radioactivity 618
17.5 Natural Radioactivity and Half-Life 619
 Half-Life 619
 CHEMISTRY AND HEALTH Environmental Radon 621
 A Natural Radioactive Decay Series 621
17.6 Radiocarbon Dating: Using Radioactivity to Measure the Age of Fossils and Other Artifacts 622
 CHEMISTRY IN THE MEDIA The Shroud of Turin 623
17.7 The Discovery of Fission and the Atomic Bomb 624
17.8 Nuclear Power: Using Fission to Generate Electricity 626
17.9 Nuclear Fusion: The Power of the Sun 627
17.10 The Effects of Radiation on Life 628
 Acute Radiation Damage 628
 Increased Cancer Risk 628
 Genetic Defects 629
 Measuring Radiation Exposure 629
17.11 Radioactivity in Medicine 629
 Isotope Scanning 629
 Radiotherapy 630
Self-Assessment Quiz 631
Key Terms 634
Exercises 634
Answers to Skillbuilder Exercises 639
Answers to Conceptual Checkpoints 639

18 Organic Chemistry 640

18.1 What Do I Smell? 641
18.2 Vitalism: The Difference between Organic and Inorganic 642
18.3 Carbon: A Versatile Atom 643
 CHEMISTRY IN THE MEDIA The Origin of Life 644
18.4 Hydrocarbons: Compounds Containing Only Carbon and Hydrogen 645
18.5 Alkanes: Saturated Hydrocarbons 646
 CHEMISTRY IN THE MEDIA Environmental Problems Associated with Hydrocarbon Combustion 647
Three-Column Problem Solving Strategies

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem-Solving Procedure</td>
<td>32</td>
</tr>
<tr>
<td>Solving Numerical Problems</td>
<td>43</td>
</tr>
<tr>
<td>Writing Formulas for Ionic Compounds</td>
<td>142</td>
</tr>
<tr>
<td>Obtaining an Empirical Formula from Experimental Data</td>
<td>188</td>
</tr>
<tr>
<td>Writing Balanced Chemical Equations</td>
<td>214</td>
</tr>
<tr>
<td>Writing Equations for Precipitation Reactions</td>
<td>222</td>
</tr>
<tr>
<td>Writing Lewis Structures for Covalent Compounds</td>
<td>331</td>
</tr>
<tr>
<td>Predicting Geometry Using VSEPR Theory</td>
<td>339</td>
</tr>
<tr>
<td>Balancing Redox Equations Using the Half-Reaction Method</td>
<td>581</td>
</tr>
<tr>
<td>Naming Alkanes</td>
<td>653</td>
</tr>
</tbody>
</table>
This book is for you, and every text feature is meant to help you learn and succeed in your chemistry course. I wrote this book with two main goals for you in mind: to see chemistry as you never have before and to develop the problem-solving skills you need to succeed in chemistry.

I want you to experience chemistry in a new way. I have written each chapter to show you that chemistry is not just something that happens in a laboratory; chemistry surrounds you at every moment. Several outstanding artists have helped me to develop photographs and art that will help you visualize the molecular world. From the opening example to the closing chapter, you will see chemistry. My hope is that when you finish this course, you will think differently about your world because you understand the molecular interactions that underlie everything around you.

My second goal is for you to develop problem-solving skills. No one succeeds in chemistry—or in life, really—without the ability to solve problems. I can’t give you a one-size-fits-all formula for problem solving, but I can and do give you strategies that will help you develop the chemical intuition you need to understand chemical reasoning.

Look for several recurring features throughout this book designed to help you master problem solving. The most important ones are: (1) a four-step process (Sort, Strategize, Solve, and Check) designed to help you learn how to develop a problem-solving approach; (2) the solution map, a visual aid that helps you navigate your way through problems; (3) two-column Examples, in which the left column explains in clear and simple language the purpose of each step of the solution shown in the right column; and (4) three-column Examples, which describe a problem-solving procedure while demonstrating how it is applied to two different Examples. In addition, the For More Practice feature at the end of each worked Example directs you to the end-of-chapter Problems that provide more opportunity to practice the skill(s) covered in each Example. In addition, Interactive Worked Examples are digital versions of select worked Examples from the text that help you break down problems using the book’s “Sort, Strategize, Solve, and Check” technique. Interactive Worked Examples can be found in the eText 2.0 and can be accessed directly at: https://media.pearsoncmg.com/ph/esm/esm_tro_intro_6/media/index.html.

Recent research has demonstrated that you will do better on your exams if you take a multiple-choice pre-exam before your actual exam. At the end of each chapter, you will find a Self-Assessment Quiz to help you check your understanding of the material in that chapter. You can string these together to make a pre-exam. For example, if your exam covers Chapters 5–7, complete the Self-Assessment Quizzes for those chapters as part of your preparation for the exam. The questions you miss on the quiz will reveal the areas you need to spend the most time studying. Studies show that if you do this, you will do better on the actual exam.

Lastly, I hope this book leaves you with the knowledge that chemistry is not reserved only for those with some superhuman intelligence level. With the right amount of effort and some clear guidance, anyone can master chemistry, including you.

Sincerely,

Nivaldo J. Tro
tro@westmont.edu
I thank all of you who have used any of the first five editions of *Introductory Chemistry*—you have made this book the best-selling book in its market, and for that I am extremely grateful. The preparation of the sixth edition has enabled me to continue to refine the book to meet its fundamental purpose: teaching chemical skills in the context of relevance.

Introductory Chemistry is designed for a one-semester, college-level, introductory or preparatory chemistry course. Students taking this course need to develop problem-solving skills—but they also must see why these skills are important to them and to their world. *Introductory Chemistry* extends chemistry from the laboratory to the student’s world. It motivates students to learn chemistry by demonstrating the role it plays in their daily lives.

This is a visual book. Whenever possible, I use images to help communicate the subject. In developing chemical principles, for example, I worked with several artists to develop multipart images that show the connection between everyday processes visible to the eye and the molecular interactions responsible for those processes. This art has been further refined and improved in the sixth edition, making the visual impact sharper and more targeted to student learning. For example, I have continued to expand and refine a hierarchical system of labeling in many of the images: the white-boxed labels are the most important, the tan boxes are second in importance, and the unboxed labels are the third most important. In many cases, this system allows information to be placed closest to its point of relevance, instead of being lumped together in the caption. In addition, this allows me to treat related labels and annotations within an image in the same way, so that the relationships between them are immediately evident. My intent is to create an art program that teaches and presents complex information clearly and concisely. Many of the illustrations showing molecular depictions of a real-world object or process have three parts: macroscopic (what we can see with our eyes); molecular and atomic (space-filling models that depict what the molecules and atoms are doing); and symbolic (how chemists represent the molecular and atomic world). Students can begin to see the connections between the macroscopic world, the molecular world, and the representation of the molecular world with symbols and formulas.

The problem-solving pedagogy employs four steps as it has done in the previous five editions: Sort, Strategize, Solve, and Check. This four-step procedure guides students as they learn chemical problem solving. Students will also encounter extensive flowcharts throughout the book, allowing them to better visualize the organization of chemical ideas and concepts.

Throughout the worked Examples in this book, I use a two- or three-column layout in which students learn a general procedure for solving problems of a particular type as they see this procedure applied to one or two worked Examples. In this format, the explanation of how to solve a problem is placed directly beside the actual steps in the solution of the problem. Many of you have told me that you use a similar technique in lecture and office hours. Since students have specifically asked for connections between worked Examples and end-of-chapter Problems, I include a For More Practice feature at the end of each worked Example that lists the end-of-chapter review Examples and end-of-chapter Problems that provide additional opportunities to practice the skill(s) covered in the example.

A successful feature of previous editions is the Conceptual Checkpoints, a series of short questions that students can use to test their mastery of key concepts as they read through a chapter. For this edition, all Conceptual Checkpoints are embedded in eText 2.0. Emphasizing understanding rather than calculation, they are designed to encourage active learning even while reading. Your continued embrace of this feature prompted me to add more of these to the sixth edition.
In this edition, I have also added a new category of End-of-Chapter Questions called Data Interpretation and Analysis. These questions present real data in real-life situations and ask students to analyze and interpret that data. They are designed to give students much needed practice in reading graphs, understanding tables, and making data-driven decisions.

In my own teaching, I have been influenced by two studies published in the last few years. The first one is a mega analysis of the effect of active learning on student learning in STEM disciplines. In this study, Freeman and his coworkers convincingly demonstrate that students learn better when they are active in the process. The second study focuses on the effect of multiple-choice pretests on student exam performance. Here, Pyburn and his coworkers show that students who take a multiple-choice pretest do better on exams than those who do not. Even more interesting, the enhancement is greater for lower language comprehension students. In my courses, I have implemented both active learning and multiple-choice pretesting with good results. In my books, I have developed tools to allow you to incorporate these techniques as well.

To help you with active learning, I have added 12 Key Concept Videos to the media package that accompanies this book. These three- to five-minute videos each introduce a key concept from the chapter. They are themselves interactive because every video has an embedded question posed to the student to test understanding. In addition, there are 19 new Interactive Worked Examples adding to a total of 39 new and revised Interactive Worked Example videos in the media package. This means that you now have a library of 31 new interactive videos and a total of 51 new and revised interactive videos to enhance your course.

In my courses, I use these videos in conjunction with the book to implement a before, during, after strategy for my students. My goal is simple: Engage students in active learning before class, during class, and after class. To that end, I assign a video before most class sessions. All Key Concept Videos and Interactive Worked Examples are embedded and interactive in eText 2.0, allowing students to review and test their understanding in real-time. The video introduces students to a concept or problem that I will cover in the lecture. During class, I expand on the concept or problem using Learning Catalytics™ to question my students. Instead of simply passively listening to a lecture, they are interacting with the concepts through questions that I pose. Sometimes I ask my students to answer individually, other times in pairs or even groups. This approach has changed my classroom. Students engage in the material in new ways. They are actively learning and have to think and process and interact. Finally, after class, I give them another assignment, usually a short follow-up question or problem. At this point, they must apply what they have learned to solve a problem.

To help you with multiple-choice pretesting, each chapter contains a Self-Assessment Quiz. Like the Conceptual Checkpoints and the videos, these quizzes are embedded in eText 2.0. These quizzes are designed so that students can test themselves on the core concepts and skills of each chapter. I encourage my students to use these quizzes as they prepare for exams. For example, if my exam covers Chapters 5–8, I assign the quizzes for those chapters for credit (you can do this in MasteringChemistry™). Students then get a pretest on the core material that will be on the exam.

My goal with this new edition is to continue to help you make learning a more active (rather than passive) process for your students. I hope that the tools that I have provided here continue to aid you in teaching your students better and more effectively. Please feel free to email me with any questions or comments you might have. I look forward to hearing from you as you use this book in your course.

Sincerely,

Nivaldo J. Tro
tro@westmont.edu

1 Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; and Wenderoth, Mary Pat. Active learning increases student performance in science, engineering, and mathematics, 2014, Proc. Natl. Acad. Sci.
What’s New in This Edition?

The book has been extensively revised and contains more small changes than can be detailed here. The most significant changes to the book and its supplements are listed below.

- I have added a new category of end-of-chapter questions called Data Interpretation and Analysis. These questions present real data in real-life situations and ask students to analyze that data. They give students much needed practice in reading graphs, digesting tables, and making data-driven decisions. A new section (Section 1.4), including a new in-chapter worked Example (Example 1.4), introduces these skills.

- There are 12 new Key Concept Videos and 19 new Interactive Worked Examples to accompany the book. That means there are 31 new videos and 51 total new and revised interactive videos to accompany the material in the sixth edition. All Key Concept Videos and Interactive Worked Examples are embedded and interactive in eText 2.0, allowing students to review and test their understanding in real-time. These tools are designed to help professors engage their students in active learning. Recent research has conclusively demonstrated that students learn better when they are active in the learning process, as opposed to passively listening and simply taking in content. The Key Concept Videos are brief (three to five minutes), and each introduces and explains a key concept from a chapter. The student does not just passively listen to the video; the video stops in the middle and poses a question to the student. The student must answer the question before the video continues. Each video also includes a follow-up question that is assignable in MasteringChemistry™. The Interactive Worked Examples are similar in concept, but instead of explaining a key concept, they walk the student through one of the in-chapter worked examples from the book. Like the Key Concept Videos, Interactive Worked Examples stop in the middle and force the student to interact by completing a step in the example. The examples also have a follow-up question that is assignable in MasteringChemistry™. The power of interactivity to make connections in problem solving is immense. I did not quite realize this power until we started making the Interactive Worked Examples and I saw how I could use the animations to make connections that are just not possible on the static page.

- All chapter-ending Self-Assessment Quizzes are embedded in eText 2.0.

- I have added 13 new Conceptual Checkpoint questions throughout the book. For this edition, all Conceptual Checkpoints are embedded in eText 2.0.

- I have updated the data throughout the book to reflect the most recent measurements and developments available. I changed the half-life of carbon-14 to 5715 years in Table 17.2 and throughout Chapter 17 to reflect the current accepted value, and I also added new information about thermoluminescent dosimeters (and deleted the information on film badge dosimeters) to Section 17.4. Other updates include changes to Figure 8.2, Climate change; Section 10.1, Bonding Models and AIDS Drugs; Table 11.5, Changes in Pollutant Levels for Major U.S. Cities, 1980–2014; the Chemistry in the Environment box in Section 12.8, Water: A Remarkable Molecule; and Section 17.8, Nuclear Power: Using Fission to Generate Electricity.
• Several chapter-opening sections and (or) the corresponding art, including Sections 1.1, 2.1, 12.1, and 16.1, have been replaced or significantly modified.
• I added a new section (Section 2.8) and new worked example (Example 2.12) as well as new end-of-chapter Problems to address conversions involving quantities with combined units such as mL/kg or km/hr.
• I have extensively modified the art program to move information from the captions and into the art itself. This allows relevant information to be placed right where it is most needed and makes the art a more accessible study and review tool. I have modified 70 figures in this way.
• I have modified end-of-chapter Problems that were showing low levels of student success when assigned in MasteringChemistry™.
• I have added temporary symbols for elements 113, 115, 117, and 118 (Uut, Uup, Uus, and Uuo, respectively) to all periodic tables.
• In all chapters, chapter text was edited for clarity and to limit use of passive voice and extraneous words and phrases.

Teaching Principles

The development of basic chemical principles—such as those of atomic structure, chemical bonding, chemical reactions, and the gas laws—is one of the main goals of this text. Students must acquire a firm grasp of these principles in order to succeed in the general chemistry sequence or the chemistry courses that support the allied health curriculum. To that end, the book integrates qualitative and quantitative material and proceeds from concrete concepts to more abstract ones.

Organization of the Text

The main divergence in topic ordering among instructors teaching introductory and preparatory chemistry courses is the placement of electronic structure and chemical bonding. Should these topics come early, at the point where models for the atom are being discussed? Or should they come later, after the student has been exposed to chemical compounds and chemical reactions? Early placement gives students a theoretical framework within which they can understand compounds and reactions. However, it also presents students with abstract models before they understand why they are necessary. I have chosen a later placement; nonetheless, I know that every course is unique and that each instructor chooses to cover topics in his or her own way. Consequently, I have written each chapter for maximum flexibility in topic ordering. In addition, the book is offered in two formats. The full version, Introductory Chemistry, contains 19 chapters, including organic chemistry and biochemistry. The shorter version, Introductory Chemistry Essentials, contains 17 chapters and omits these topics.

MasteringChemistry™ Access/Supplements

MasteringChemistry™ is the most effective and powerful online tutorial, homework, and assessment system available, proven to improve results by helping students master concepts quickly. Interactive, self-paced coaching activities provide individualized coaching to help students stay on track. With a wide range of activities available, students learn actively and master challenging course concepts. See the MasteringChemistry™ visual walkthrough section for more in-depth details.

Upon textbook purchase, students and teachers are granted access to MasteringChemistry™ with Pearson eText. High school teachers can obtain preview or adoption access to MasteringChemistry™ in one of the following ways:

Preview Access

• Teachers can request preview access online by visiting www.PearsonSchool.com/Access_Request. Select Science, choose Initial Access, and complete the form under Option 2. Preview Access information will be sent to the teacher via e-mail.
Adoption Access

- With the purchase of this program, a Pearson Adoption Access Card with Instructor Manual will be delivered with your textbook purchase. (ISBN: 978-0-13-354087-1)
- OR
- Visit PearsonSchool.com/Access_Request, select Science, choose Initial Access, and complete the form under Option 3—MyLab/Mastering Class Adoption Access. Teacher and Student access information will be sent to the teacher via e-mail.

Students, ask your teacher for access

Pearson reserves the right to change and/or update technology platforms, including possible edition updates to customers during the term of access. This will allow Pearson to continue to deliver the most up-to-date content and technology to customers. Customer will be notified of any change prior to the beginning of the new school year.

For the Teacher

Most of the teacher supplements and resources for this text are available electronically to qualified adopters within Mastering and on the Instructor Resource Center (IRC). Upon adoption or to preview, please go to www.pearsonschool.com/access_request and select Instructor Resource Center. You will be required to complete a brief one-time registration subject to verification of educator status. Upon verification, access information and instructions will be sent to you via e-mail. Once logged into the IRC, enter 0-13-455737-9 in the “Search our Catalog” box to locate resources.

Instructor Manual with Complete Solutions

This manual features lecture outlines with presentation suggestions, teaching tips, suggested in-class demonstrations, and topics for classroom discussion. It also contains full solutions to all the end-of-chapter problems from the text. This is available for download from the Instructor’s Resource Center.

TestGen

This download-only test bank includes more than 2000 questions and is available on the Instructor’s Resource Center.

MasteringChemistry™ Instructor’s Resources

MasteringChemistry™ provides a wealth of instructor resources in addition to those listed above. These resources include PowerPoint tools, images, videos, animations, and more.

For the Student

The following resources are for purchase.

Study Guide

Each chapter of the Study Guide contains an overview, key learning outcomes, a chapter review, as well as practice problems for each major concept in the text. Each chapter is followed by two or three self-tests with answers so students can check their work.

Student Solutions Manual

The manual provides solutions to those problems that have a short answer in the text’s Answers section (problems numbered in blue in the text).
Acknowledgments

This book has been a group effort, and I am grateful for all of those who helped me. First and foremost, I would like to thank my editor Scott Dustan. I have known Scott for many years and in various roles, and am grateful to have him as my editor. I appreciate his straightforward style, constant support, and commitment to my work. I am also in a continual state of awe and gratitude to Erin Mulligan, my development editor and friend. Thanks, Erin, for all your outstanding help and advice. Thanks also to Jackie Jakob, media editor extraordinaire. Jackie is the force behind the media elements that accompany this book, and I am grateful for her vision, guidance, and friendship. Thanks also to Jennifer Hart, with whom I have now worked for over a decade. Thanks Jennifer for your constant attention, guidance, and wisdom on all of my projects at Pearson. I am also grateful for Jeanne Zalesky, Adam Jaworski, Paul Corey and the rest of Pearson leadership. You have supported my projects and my vision from the beginning, and I am privileged to work with you.

I would also like to thank Elizabeth Ellsworth, my marketing manager, whose creativity in describing and promoting the book is without equal. I am also grateful to Coleen Morrison, whose help with editing and manuscript preparation was invaluable. Thanks also to the MasteringChemistry™ team who continue to provide and promote the best online homework system on the planet. I also appreciate the expertise and professionalism of my copy editor, Betty Pessagno, as well as the skill and diligence of Francesca Monaco and her colleagues at codeMantra. I am a picky author, and they always accommodated my seemingly endless requests. Thank you, Francesca. Thanks as well to my content producer, Chandrika Madhavan and the rest of the Pearson editorial and production team—they are part of a first-class operation. This text has benefited immeasurably from their talents and hard work. I owe a special debt of gratitude to Quade Paul, who continues to make my ideas come alive in his chapter-opener and cover art.

I am grateful for the assistance of my colleagues, Allan Nishimura, David Marten, Stephen Contakes, Kristi Lazar, Carrie Hill, Michael Everest, Amanda Silverstein, and Heidi Henes-Vanbergen, who have supported me in my department while I worked on this book. I owe a special debt of gratitude to Michael Tro. He has been helping me with manuscript preparation, proofreading, organizing art manuscripts, and tracking changes in end-of-chapter material for the past six years. Michael has been reliable, accurate, and invaluable. Thanks Mikee! I also owe a special thanks to my colleagues Michael Everest and Tom Greenbowe, who collaborated with me in creating some of the end of chapter questions.

I am grateful to those who have given so much to me personally while writing this book. First on that list is my wife, Ann. Her patience and love for me are beyond description. I also thank my children, Michael, Ali, Kyle, and Kaden, whose smiling faces and love of life always inspire me. I come from a large Cuban family, whose closeness and support most people would envy. Thanks to my parents, Nivaldo and Sara; my siblings, Sarita, Mary, and Jorge; my siblings-in-law, Jeff, Nachy, Karen, and John; my nephews and nieces, Germain, Danny, Lisette, Sara, and Kenny. These are the people with whom I celebrate life.

Lastly, I am indebted to the many reviewers, listed next, whose ideas are found throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project.
Reviewers of the 6th Edition

Premilla Arasasingham
El Camino College
Crystal Bendenaugh
Southeastern University
Charles Carraher
Florida Atlantic University
Cassidy Dobson
St. Cloud University
David Futoma
Roger Williams University
Galen George
Santa Rosa Junior College
Marcia Gillette
Indiana University Kokomo
Ganna Lyubartseva
Southern Arkansas University
Helen Motokane
El Camino College
David Rodgers
North Central Michigan College
Mu Zheng
Tennessee State University

6th Edition Accuracy Reviewers

Kelly Befus
Anoka-Ramsey Community College
Stevenson Flemer
University of Vermont
Lance Lund
Anoka-Ramsey Community College
Tanea Reed
Eastern Kentucky University
Jennifer Zabzydar
Palomar College

Reviewers of the 5th Edition

Scott Bunge
Kent State University
Ebru Buyuktanir
Stark State College
Claire Cohen
University of Toledo
Robert Culp
California State University — Fresno
Rosa Davila
College of Southern Idaho
Alyse Dills
Harrisburg Area Community College
Sylvia Esjornson
Southwestern Oklahoma State University
Jennifer Firestine
Lindenwood University
Kathy Flynn
College of the Canyons
Sara Harvey
Los Angeles Pierce College
Michael Hauser
St. Louis Community College — Meramec
Edward Lee
Texas Tech University
Craig McClure
University of Alabama — Birmingham
Virginia Miller
Montgomery College
Michael Rodgers
Southeast Missouri State University
Janice Webster
Ivy Tech Community College — Terre Haute
James Zubricky
University of Toledo

5th Edition Accuracy Reviewers

Alyse Dills
Harrisburg Area Community College
Stevenson Flemer Jr.
University of Vermont
Connie Lee
Montgomery County Community College
Lance Lund
Anoka-Ramsey Community College
Kent McCorkle
Fresno City College

Reviewers of the 4th Edition

Jeffrey Allison
Austin Community College
Mikhail V. Barybin
The University of Kansas
Lara Baxley
California Polytechnic State University
Kelly Befus
Anoka-Ramsey Community College
Joseph Bergman
Illinois Central College
Simon Bott
University of Houston
Carmela Byrnes
MiraCosta College
Carmela Magliocchi Brynes
MiraCosta College
Guy Dadson
Fullerton College
Maria Cecilia D. de Mesa
Baylor University
Brian G. Dixon
Massachusetts Maritime Academy
Timothy Dudley
Villanova University
Jeannine Eddleton
Virginia Tech
Ron Erickson
University of Iowa
Donna Friedman
St. Louis Community College—Florissant Valley
Luther D. Giddings
Salt Lake Community College
Marcus Giotto
Quinsigamond Community College
Melodie Graber
Oakton Community College
Maru Grant
Ohiolene College
Jerod Gross
Roanoke Benson High School
Tammy S. Gummersheimer
Schenectady County Community College
Tamara E. Hanna
Texas Tech University
Michael A. Hauser
St. Louis Community College
Bruce E. Hodson
Baylor University
Reviewers of the 3rd Edition

Benjamin Arrowood
Ohio University

Joe Bergman
Illinois Central College

Timothy Dudley
Villanova University

Sharlene J. Dzugan
University of Cumberlands

Thomas Dzugan
University of Cumberlands

Donna G. Friedman
St. Louis Community College

Erick Fuoco
Daley College

Melodie A. Graber
Oakton Community College

Michael A. Hauser
St. Louis Community College, Meramec Campus

Martha R. Joseph
Westminster College

Timothy Kreider
University of Medicine & Dentistry of New Jersey

Laurie Leblanc
Grossmont College

Carol A. Martinez
Central New Mexico Community College

Kresimir Rupnik
Louisiana State University

Kathleen Thrush Shaginaw
Particular Solutions, Inc.

Pong (David) Shieh
Wharton College

Mary Sohn
Florida Tech

Kurt Allen Teets
Okaolosa-Walton College

John Thurston
University of Iowa

Anthony P. Toste
Missouri State University

Carrie Woodcock
Eastern Michigan University

Reviewers of the 2nd Edition

David S. Ballantine, Jr.
Northern Illinois University

Colin Bateman
Brevard Community College

Michele Berkey
San Juan College

Steven R. Boone
Central Missouri State University

Morris Bramlett
University of Arkansas—Manticoe

Bryan E. Breyfogle
Southwest Missouri State University

Frank Carey
Wharton County Junior College

Robbey C. Culp
Fresno City College

Michelle Driessen
University of Minnesota—Minneapolis

Donna G. Friedman
St. Louis Community College—Florissant Valley

Crystal Gambino
Manatee Community College

Steve Gunther
Albuquerque Technical Vocational Institute

Michael Hauser
St. Louis Community College—Meramec

Newton P. Hillard, Jr.
Eastern New Mexico University

Carl A. Hoeger
University of California—San Diego

Donna K. Howell
Angelo State University

Nichole Jackson
Odessa College

T. G. Jackson
University of South Alabama
Reviewers of the 1st Edition

Lori Allen
University of Wisconsin—Parkside

Laura Andersson
Big Bend Community College

Danny R. Bedgood
Arizona State University

Christine V. Bilicki
Pasadena City College

Warren Bosch
Elgin Community College

Bryan E. Breyfogle
Southwest Missouri State University

Carl J. Carrano
Southwest Texas State University

Donald C. Davis
College of Lake County

Donna G. Friedman
St. Louis Community College at Florissant Valley

Carol A. Martinez
Albuquerque Technical Vocational Institute

Charles Michael McCallum
University of the Pacific

Robin McCann
Shippensburg University

Victor Ryzhov
Northern Illinois University

Theodore Sakano
Rockland Community College

Deborah G. Simon
Santa Fe Community College

Mary Sohn
Florida Institute of Technology

Peter-John Stanskas
San Bernardino Valley College

James G. Tarter
College of Southern Idaho

Ruth M. Topich
Virginia Commonwealth University

Eric L. Trump
Emporia State University

Mary Urban
College of Lake County

Richard Watt
University of New Mexico

Lynne Zeman
Kirkwood Community College

Leslie Wo-Mei Fung
Loyola University of Chicago

Dwayne Gergens
San Diego Mesa College

George Goth
Skyline College

Jan Gryko
Jacksonville State University

Roy Kennedy
Massachusetts Bay Community College

C. Michael McCallum
University of the Pacific

Kathy Mitchell
St. Petersburg Junior College

Bill Nickels
Schoolcraft College

Bob Perkins
Kwantlen University College

Mark Porter
Texas Tech University

Caryn Prudenté
University of Southern Maine

Rill Ann Reuter
Winona State University

Connie M. Roberts
Henderson State University

Jeffery A. Schneider
SUNY—Oswego

Kim D. Summerhays
University of San Francisco

Ronald H. Takata
Honolulu Community College

Calvin D. Tormanen
Central Michigan University

Eric L. Trump
Emporia State University

Donald R. Jones
Lincoln Land Community College

Kirk Kawagoe
Fresno City College

Roy Kennedy
Massachusetts Bay Community College

Blake Key
Northwestern Michigan College

Rebecca A. Krystyniak
St. Cloud State University

Laurie LeBlanc
Cuyamaca College

Ronald C. Marks
Warner Southern College

Donald C. Davis
College of Lake County

Donna G. Friedman
St. Louis Community College at Florissant Valley
Help students develop 21st-century skills to succeed in chemistry courses, future careers, and beyond.

Nivaldo Tro’s approach introduces students to 21st-century skills, encouraging them to think critically when they encounter complex information and real-world problems.

NEW! Data Interpretation and Analysis Questions at the end of each chapter allow students to work with real data to develop 21st-century problem-solving skills. These questions ask students to sort, analyze and interpret actual data from real-life situations. Students practice reading graphs, digesting tables, and making data-driven decisions.

A new section (Section 1.4), which includes a new in-chapter worked example (Example 1.1), introduces data interpretation and analysis skills and emphasizes their importance in student success.

1.4 Analyzing and Interpreting Data

Identify patterns in data and draw inferences.

We just learned how early scientists such as Lavoisier and Dalton saw patterns in a series of related measurements. Lists of measurements contain scientific data, and learning to analyze and interpret data is an important scientific skill.

Identifying Patterns in Data

Suppose you are an early chemist trying to understand the composition of water. You know that water is composed of the elements hydrogen and oxygen. You do several experiments in which you decompose different samples of water into hydrogen and oxygen, and you get the following results:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mass of Water</th>
<th>Mass of Hydrogen</th>
<th>Mass of Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20.0 g</td>
<td>2.2 g</td>
<td>17.8 g</td>
</tr>
<tr>
<td>B</td>
<td>10.0 g</td>
<td>1.1 g</td>
<td>8.9 g</td>
</tr>
</tbody>
</table>

Do you notice any patterns in the data? The first and second patterns to note is that the mass of the samples of oxygen and hydrogen always sums to the mass of the water. In fact, the oxygen and hydrogen are fixed in a 2:1 ratio. The sum of the masses of hydrogen and oxygen = 20.0 g water. The same is true for the other sample. Another pattern, which is a bit more difficult to see, is that the ratio of the masses of oxygen and hydrogen is the same for each sample.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.2 g</td>
<td>17.8 g</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1.1 g</td>
<td>8.9 g</td>
<td>1</td>
</tr>
</tbody>
</table>

The ratio in the second samples are due to experimental error, which is common in all measurements and observations.

Data Interpretation and Analysis

Conceptual Checkpoint: What was the average rate of increase in carbon dioxide concentration from 2000 to 2013?

Solution:

Using the graph in Figure 1.1 and answer each question:

(a) What was the concentration of carbon dioxide in 1990?
(b) What was the concentration in 2000?
(c) What was the concentration in 2007?
(d) What was the average rate of increase over time?
(e) If the average rate of increase remains constant, what is the carbon dioxide concentration in 2015?

Graph: See the graph for the concentration of carbon dioxide from 1990 to 2013. The graph shows the concentration of carbon dioxide in Earth's atmosphere at different times. The graph has a trend line that indicates an increase in carbon dioxide concentration over time. The rate of increase is represented by the slope of the line—has increased since about 1960.

Answers to Conceptual Checkpoints

1. The average rate of increase for carbon dioxide concentration from 1990 to 2013 was 1.055 ppm/year.
2. The average rate of increase for carbon dioxide concentration from 1990 to 2000 was 1.07 ppm/year.
3. The average rate of increase for carbon dioxide concentration from 2000 to 2007 was 1.06 ppm/year.
4. The average rate of increase for carbon dioxide concentration from 2007 to 2013 was 1.04 ppm/year.

Skillbuilder 3.11

U.S. Energy Consumption by Source

![Graph showing U.S. energy consumption by source from 1860 to present.](image)

Questions:

(a) Which two sources of U.S. energy decline as a percent of total energy use between 1860 and 2013? (b) How much U.S. energy (in joules) was produced by nuclear power in 1990? (c) How much U.S. energy (in joules) was produced by hydroelectric power in 2013? (d) Which two sources of U.S. energy increase as a percent of total energy use between 1860 and 2013? (e) Which two sources of U.S. energy increase as a percent of total energy use between 2013 and 2040? (f) Which source of U.S. energy is predicted to be the largest source of energy by 2040? (g) Which two sources of U.S. energy were the largest sources of energy in 2013? (h) What is the predicted percent of total energy use for each source from 1980 to 2040? (i) What total percent of U.S. energy is provided by natural gas in 2013? (j) Which sources provide the most energy to U.S. industries? (k) How much U.S. energy (in joules) was produced by coal in 1990? (l) Which two sources provide the most energy to U.S. homes? (m) Which two sources provide the most energy to U.S. businesses? (n) Which two sources were the largest sources of energy in 1860? (o) Which sources did not change their percent of energy use between 1860 and 2013? (p) Which sources increased their percent of energy use between 1860 and 2013? (q) Which sources increased their percent of energy use between 2013 and 2040? (r) Which sources did not change their percent of energy use between 2013 and 2040? (s) Which sources increased their percent of energy use between 1860 and 2013? (t) Which sources increased their percent of energy use between 2013 and 2040? (u) Which sources increased their percent of energy use between 1860 and 2013? (v) Which sources increased their percent of energy use between 2013 and 2040? (w) Which sources increased their percent of energy use between 1860 and 2013? (x) Which sources increased their percent of energy use between 2013 and 2040? (y) Which sources increased their percent of energy use between 1860 and 2013? (z) Which sources increased their percent of energy use between 2013 and 2040?
Students build a framework for solving problems.

Nivaldo Tro’s unique problem-solving technique, “Sort, Strategize, Solve, and Check,” teaches students how to successfully approach, set up, and solve the problems they encounter in their introductory chemistry course. Solution maps visually walk students through problems and help them learn how to organize and use given information to successfully solve problems.

Two- and three-column example formats help students break down the steps of each problem and learn and practice problem-solving techniques they can apply in other assignments.

NEW! and UPDATED! Interactive Worked Examples are digital versions of select worked examples from the text that make Nivaldo Tro’s unique problem-solving strategies interactive. In these digital versions the author walks students through the problem-solving process, asking them to pause and answer questions along the way. Worked example videos are embedded in eText 2.0 and assignable in MasteringChemistry™.
Students learn to think critically about information in the classroom and in everyday life.

NEW! Key Concept Videos combine artwork from the textbook with 2D and 3D animations to create a dynamic on-screen viewing experience and help students understand and apply important concepts throughout the text. Key Concept Videos are embedded in eText 2.0 and are assignable in MasteringChemistry™.

UPDATED! Chapter-in-Review Exercises and Self-Assessment Quizzes have been revised using MasteringChemistry™ metadata to identify questions that students struggled with in previous editions. In addition to a full complement of end-of-chapter questions, each chapter features a 10–15 multiple-choice question quiz that help students assess their understanding of chapter content, building critical thinking skills and reinforcing key concepts.

Chapter 3 in Review

Self-Assessment Quiz

<table>
<thead>
<tr>
<th>Q1. Which substance is a pure compound?</th>
<th>(a) Gold</th>
<th>(b) Water</th>
<th>(c) Milk</th>
<th>(d) Fruit cake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2. Which property of trinitrotoluene (TNT) is most likely a chemical property?</td>
<td>(a) Yellow color</td>
<td>(b) Melting point is 80.1 °C</td>
<td>(c) Explosive</td>
<td>(d) None of the above</td>
</tr>
<tr>
<td>Q3. Which change is a chemical change?</td>
<td>(a) The condensation of dew on a cold night</td>
<td>(b) A forest fire</td>
<td>(c) The smoothening of rocks by ocean waves</td>
<td>(d) None of the above</td>
</tr>
<tr>
<td>Q4. Which process is endothermic?</td>
<td>(a) The burning of natural gas in a stove</td>
<td>(b) The metabolism of glucose by your body</td>
<td>(c) The melting of ice in a soft drink</td>
<td>(d) None of the above</td>
</tr>
<tr>
<td>Q5. A 35-g sample of potassium completely reacts with chlorine to form 67 g of potassium chloride. How many grams of chlorine must have reacted?</td>
<td>(a) 67 g.</td>
<td>(b) 35 g.</td>
<td>(c) 32 g.</td>
<td>(d) 12 g.</td>
</tr>
<tr>
<td>Q6. A runner burns 2.58 × 10^3 kJ during a five-mile run. How many nutritional Calories did the runner burn?</td>
<td>(a) 1.07 × 10^4 Cal</td>
<td>(b) 612 Cal</td>
<td>(c) 6.12 × 10^3 Cal</td>
<td>(d) 1.07 × 10^4 Cal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q7. Convert the boiling point of water (100.00 °C) to K.</th>
<th>(a) 373.15 K</th>
<th>(b) 0 K</th>
<th>(c) 100.00 K</th>
<th>(d) 373.15 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q8. A European doctor reports that you have a fever of 39.2 °C. What is your fever in degrees Fahrenheit?</td>
<td>(a) 102.6 °F</td>
<td>(b) 128.26 °F</td>
<td>(c) 71.2 °F</td>
<td>(d) 4 °F</td>
</tr>
<tr>
<td>Q9. How much heat must be absorbed by 125 g of ethanol to change its temperature from 21.5 °C to 34.8 °C?</td>
<td>(a) 6.95 kJ</td>
<td>(b) 4.02 × 10^3 kJ</td>
<td>(c) 86.6 kJ</td>
<td>(d) 4.02 kJ</td>
</tr>
<tr>
<td>Q10. Substance A has a heat capacity that is much greater than that of substance B. If 10.0 g of substance A initially at 25.0 °C is brought into thermal contact with 10.0 g of B initially at 75.0 °C, what can you conclude about the final temperature of the two substances once the exchange of heat between the substances is complete?</td>
<td>(a) The final temperature will be between 25.0 °C and 50.0 °C.</td>
<td>(b) The final temperature will be between 50.0 °C and 75.0 °C.</td>
<td>(c) The final temperature will be 50.0 °C.</td>
<td>(d) You can conclude nothing about the final temperature without more information.</td>
</tr>
</tbody>
</table>
Multipart macroscopic and molecular images engage students in chemistry.

Multipart images allow students to see the relationship between the formulas they write down on paper (symbolic), the world they see around them (macroscopic), and the atoms and molecules that compose the world (molecular).

Abundant molecular-level views show students the connection between everyday processes that are visible to the eye and the behavior of atoms and molecules.

Figure 3.1 Atoms and molecules All matter is ultimately composed of atoms. (a) In some substances, such as aluminum, the atoms exist as independent particles. (b) In other substances, such as rubbing alcohol, several atoms bond together in well-defined structures called molecules.

Figure 3.4 Three states of matter Water exists as ice (solid), water (liquid), and steam (gas). In ice, the water molecules are closely spaced and, although they vibrate about a fixed point, they do not generally move relative to one another. In liquid water, the water molecules are also closely spaced but are free to move around and past each other. In steam, water molecules are separated by large distances and do not interact significantly with one another.
A revised art program helps students make connections and see that chemistry is all around them.

NEW and UPDATED! Illustrations include extensive labels and annotations to direct student attention to key elements in the art and promote understanding of the processes depicted. Numerous figures in the sixth edition have updated labels and annotations to focus readers on key concepts. Relevant information is placed where it is most needed and makes the art a vital study and review tool.

Figure 3.13 Separating a mixture of two liquids by distillation

Figure 3.9 A physical property The boiling point of water is a physical property, and boiling is a physical change. When water boils, it turns into a gas, but the water molecules are the same in both the liquid water and the gaseous steam.

Figure 3.14 Distillation
Dynamic Study Modules adapt to students’ individual levels of understanding and help them study effectively on their own. Dynamic Study Modules continuously assess student activity and performance in real time. These are available as graded assignments prior to class and are accessible on smartphones, tablets, and computers.

Topics include key math skills and general chemistry concepts such as phases of matter, redox reactions, acids and bases, solutions, and chemical equilibrium.

The Chemistry Primer’s pre-built diagnostic assignments get students up-to-speed at the beginning of the course, addressing topics such as math in the context of chemistry, basic chemical literacy, balancing chemical equations, mole theory, and stoichiometry. The Chemistry Primer scales to students’ needs – remediation is only suggested to students that perform poorly on initial assessment, and involves Tutorials, Wrong-Answer Specific Feedback, Video Instruction, and Step-Wise Scaffolding to build student understanding.
MasteringChemistry™ ensures student engagement before, during, and after class.

With questions specific to Tro’s Introductory Chemistry, Learning Catalytics™ generates class discussion, guides lecture, and promotes peer-to-peer learning with real-time analytics. Instructors can:

- **NEW!** Upload a full PowerPoint® deck for easy creation of slide questions
- Help students develop critical thinking skills
- Monitor responses to find out where students are struggling
- Adjust teaching strategy with real-time data
- Automatically group students for discussion, teamwork, and peer-to-peer learning

UPDATED! MasteringChemistry™ offers a wide variety of problems, ranging from multi-step tutorials with extensive hints and feedback to multiple-choice End-of-Chapter Problems and Test Bank questions.

To provide additional scaffolding for students moving from Tutorial Problems to End-of-Chapter Problems we created **NEW! Enhanced End-of-Chapter Problems** that now contain specific wrong-answer feedback.
Students can study anywhere with fully interactive and mobile eText 2.0 features.

NEWLY INTERACTIVE! Self-Assessment Quizzes and Conceptual Checkpoints allow students to interact with all Conceptual Checkpoints and Self-Assessment Quizzes within eText 2.0! With one click these activities are brought to life, allowing students to study on their own and test their understanding in real-time. These interactives help students extinguish misconceptions and deepen their understanding of important concepts and topics.

An icon in the text alerts students to interactive eText 2.0 features. The eText is fully optimized for use on mobile devices, allowing students to study anywhere.

In addition to **Conceptual Checkpoints** and **Self-Assessment Quizzes**, all **Key Concept Videos** and **Interactive Worked Examples** are available in the eText.