Cutting Edge Microbiology Research for Today’s Learners

The 13th Edition of Tortora, Funke, and Case’s *Microbiology: An Introduction* brings a 21st-century lens to this trusted market-leading introductory textbook. New and updated features, such as *Exploring the Microbiome* boxes and *Big Picture* spreads, emphasize how our understanding of microbiology is constantly expanding. New *In the Clinic Video Tutors* in *Mastering™ Microbiology* illustrate how students can apply their learning to their future careers. *Mastering Microbiology* also includes new *Ready-to-Go Teaching Modules* that guide you through the most effective teaching tools available.
Do your students struggle to make connections between course topics?

NEW! Exploring the Microbiome boxes illustrate how research in microbiology is revolutionizing our understanding of health and disease. These boxes highlight the possibilities in this exciting field and present insights into some of the newly identified ways that microbes influence human health. In addition, they provide examples of how research in this field is done—building on existing information, designing fair testing, drawing conclusions, and raising new questions.

Exploring the Microbiome: Do Artificial Sweeteners (and the Intestinal Microbiota That Love Them) Promote Diabetes?

For years, beverages made with artificial sweeteners were endorsed by diabetics and weight watchers because, unlike sugar, artificial sweeteners don’t impact blood glucose levels and don’t provide calories. However, recent research indicates artificial sweeteners may actually increase the risk of cardiovascular disease and diabetes. One study, published in 2015 in the American Diabetes Association, found that daily consumption of diet soda was associated with a 67% greater relative risk of developing type 2 diabetes. Unregulated by bacteria, artificial sweeteners provide zero calories to us when we consume them. But they are a food source for bacteria, allowing them to grow and multiply by over twenty-fold. As bacteria grow, they consume and increase in numbers, other types of microbiota simultaneously decline. Among these are Lactobacillus bacteria. Studies indicate that high sucrose levels in the intestine are associated with decreased blood sugar levels. The exact mechanism remains unclear, but it is hypothesized that decreases in the population of lactobacilli bacteria lead to higher blood glucose levels, thereby forcing the body to produce more insulin to control the rising blood glucose. Probiotics—high in insulin—may help to resist insulin resistance, a condition whereby the body stops responding normally to the hormone. Insulin resistance is the hallmark sign of type 2 diabetes. Recent and current research are exploring whether ingesting probiotics with lactobacillus acidophilus and bifidobacteria strains may be a useful treatment for type 2 diabetes. Initial studies show a decrease in blood sugar levels and a reduction in glycated hemoglobin levels. Further research is required to fully understand the role of probiotics in managing type 2 diabetes.

Exploring the Microbiome: Antimicrobial Soaps: Doing More Harm Than Good?

Staphylococcus aureus is a normal member of the human microbiome, found on the skin and in the nose. S. aureus is also a significant cause of healthcare-associated infections in patients. The bacterium can switch from harmless commensal of the skin community to a disease-causing pathogen if it gains entry to the body through a wound. Some methicillin-resistant S. aureus infections are nosocomial—that is, caused by bacteria that have colonized on or on the body before someone became a patient. Hospitals have long used a disinfectant called trichloroethylene to prevent methicillin-resistant infections. However, this chemical has been shown to be harmful to many household products, such as food-degrading enzymes, toothpaste, and body washes. However, using these antimicrobial products only seems to be a “wise choice of a good thing.”

Trichloroethylene irritates the skin and is excreted in urine. Therefore, trichloroethylene can be found in many areas of the body, including the nasal mucosa, of people who use these products. One note is the potential threat of S. aureus in an example of unintended consequences, prevention of trichloroethylene from blood is also associated with nasal colonization of the S. aureus. S. aureus is more likely to bind to nasopharyngeal membranes in the presence of trichloroethylene. Moreover, constant exposure to trichloroethylene selects for trichloroethylene-resistant mutants over generations of bacterial growth. Trichloroethylene-resistant bacteria avoid death by removing the chemical from dead cells using transport proteins. These transporters can also remove some antibiotics from the bacterial cells. However, methicillin-resistant S. aureus can also inhibit their own replication by increasing the methicillin-resistant strain.

Starting in late 2015, the American Drug Association found that trichloroethylene is a common cause of drug resistance. The American Medical Association recommends using a mild soap and water and proper handwashing techniques instead—"Handwashing matters."
New! **In the Clinic Video Tutors** bring to life the scenarios in the chapter-opening In the Clinic features. Concepts related to infection control, principles of disease, and antimicrobial therapies are integrated throughout the chapters, providing a platform for instructors to introduce clinically relevant topics throughout the term. Each Video Tutor has a series of assessments assignable in Mastering Microbiology that are tied to learning outcomes.

NEW! **Ready-to-Go Teaching Modules** in the Instructor Resources of Mastering Microbiology help instructors efficiently make use of the available teaching tools for the toughest topics in microbiology. Pre-class assignments, in-class activities, and post-class assessments are provided for ease of use. Within the Ready-to-Go Teaching Modules, **Adopt a Microbe** modules enable instructors to select specific pathogens for additional focus throughout the text.
Interactive Microbiology is a dynamic suite of interactive tutorials and animations that teach key microbiology concepts. Students actively engage with each topic and learn from manipulating variables, predicting outcomes, and answering assessment questions that test their understanding of basic concepts and their ability to integrate and build on these concepts. These are available in Mastering Microbiology.

NEW! Even more Interactive Microbiology modules are available for Fall 2018. Additional titles include:
- Antimicrobial Resistance: Mechanisms
- Antimicrobial Resistance: Selection
- Aerobic Respiration in Prokaryotes
- The Human Microbiome
MicroBoosters are a suite of brief video tutorials that cover key concepts some students may need to review or relearn. Titles include Study Skills, Math, Scientific Terminology, Basic Chemistry, Cell Biology, and Basic Biology.

Dynamic Study Modules help students acquire, retain, and recall information faster and more efficiently than ever before. The flashcard-style modules are available as a self-study tool or can be assigned by the instructor.

NEW! Instructors can now remove questions from Dynamic Study Modules to better fit their course.
Do your students have trouble organizing and synthesizing

Big Picture spreads integrate text and illustrations to help students gain a broad, “big picture” understanding of important course topics.

Each **Big Picture spread** includes an overview that breaks down important concepts into manageable steps and gives students a clear learning framework for related chapters. Each spread includes Key Concepts that help students make the connection between the presented topic and previously learned microbiology principles. Each spread is paired with a coaching activity and assessment questions in Mastering Microbiology.

Bioterrorism

Biological agents were first tapped by armies, and now by terrorists. Today, technology and ease of travel increase the potential damage.

History of Bioweapons

Biological weapons (bioweapons)—pathogens intentionally used for hostile purposes—are not new. The “ideal” bioweapon is one that disseminates by aerosol, spreads efficiently from human to human, causes debilitating disease, and has no readily available treatment. The earliest recorded use of a bioweapon occurred in 1346 during the Siege of Kaffa, in what is now known as Feodosia, Ukraine. There the Tartar army catapulted their own dead soldiers’ plague-ridden bodies over city walls to infect opposing troops. Survivors from that attack went on to introduce the “Black Death” to the rest of Europe, sparking the plague pandemic of 1348–1350.

In the eighteenth century, blankets contaminated with smallpox were intentionally introduced into Native American populations by the British during the French and Indian War. And during the Sino-Japanese War (1937–1945), Japanese planes dropped canisters of fleas carrying Yersinia pestis bacteria, the causative agent of plague, on China. In 1975, Bacillus anthracis endospores were accidentally released from a bioweapon production facility in Sverdlovsk.

Selected Diseases Identified as Potential Bioweapons

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Viral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax (Bacillus anthracis)</td>
<td>Nonbacterial meningitis (Neisseria)</td>
</tr>
<tr>
<td>Pneumococcal (Streptococcus pneumoniae)</td>
<td>Neumotoric fever (Staph, Meningitis, Lyme)</td>
</tr>
<tr>
<td>Botulism (Clostridium botulinum tetani)</td>
<td>Neumotoric fever (Staph, Meningitis, Lyme)</td>
</tr>
<tr>
<td>Tularemia (Francisella tularensis)</td>
<td>Monkeypox</td>
</tr>
<tr>
<td>Cholera (Vibrio cholerae)</td>
<td>Nipah virus infection</td>
</tr>
<tr>
<td>Plague (Yersinia pestis)</td>
<td>Smallpox</td>
</tr>
</tbody>
</table>

Biological Weapons Banned in the Twentieth Century

The Geneva Conventions are internationally agreed upon standards for conducting war. Written in the 1920s, they prohibited deploying bioweapons—but did not specify that possessing or creating them was illegal. As such, most powerful nations in the twentieth century continued to create bioweapons, and the growing stockpiles posed an ever-growing threat. In 1975, the Biological Weapons Convention banned both possession and development of biological weapons. The majority of the world’s nations ratified the treaty, which stipulated that any existing bioweapons be destroyed and related research halted.

Emergence of Bioterrorism

Unfortunately, the history of bioweapons doesn’t end with the ratification of the Biological Weapons Convention. Since then, the main actors engaging in bioweapons have not been nations but rather radical groups and individuals. One of the most publicized bioterrorism incidents occurred in 2001, when five people died from, and many more were infected with, anthrax that an army researcher sent through the mail in letters.
Public Health Authorities Try to Meet the Threat of Bioterrorism

One of the problems with bioweapons is that they contain living organisms, so their impact is difficult to control or even predict. However, public health authorities have created some protocols to deal with potential bioterrorism incidents.

Vaccination: A Key Defense

When the use of biological agents is considered a possibility, military personnel and first responders (health care personnel and others) are vaccinated—if a vaccine for the suspected agent exists. New vaccines are being developed, and existing vaccines are being stockpiled for use where needed.

The current plan to protect civilians in the event of an attack with a microbe is illustrated by the smallpox preparedness plan. This killer disease has been eradicated from the population, but unfortunately, a cache of the virus remains preserved in research facilities, meaning that it might one day be weaponized. It’s not practical to vaccinate all people against the disease. Instead, the U.S. government’s strategy following a confirmed smallpox outbreak includes “ring containment and voluntary vaccination.” A “ring” of vaccinated/protected individuals is built around the bioterrorism infection case and their contacts to prevent further transmission.

New Technologies and Techniques to Identify Bioweapons

Monitoring public health, and reporting incidence of diseases of note, is the first step in any bioterrorism defense plan. The faster a potential incident is uncovered, the greater the chance for containment. Rapid tests are being investigated to detect genetic changes in hosts due to bioweapons even before symptoms develop. Early-warning systems, such as DNA chips or recombinant cells that fluoresce in the presence of a bioweapon, are also being developed.

Biological hazard symbol.

Examining mail for B. anthracis.

Pro Strips Rapid Screening System, developed by ADVNT Biotechnologies LLC, is the first advanced multi-agent biowarfare detection kit that tests for anthrax, ricin toxin, botulinum toxin, plague, and SEB (staphylococcal enterotoxin B).

One of the problems with bioweapons is that they contain living organisms, so their impact is difficult to control or even predict. However, public health authorities have created some protocols to deal with potential bioterrorism incidents.

Vaccination: A Key Defense

When the use of biological agents is considered a possibility, military personnel and first responders (health care personnel and others) are vaccinated—if a vaccine for the suspected agent exists. New vaccines are being developed, and existing vaccines are being stockpiled for use where needed.

The current plan to protect civilians in the event of an attack with a microbe is illustrated by the smallpox preparedness plan. This killer disease has been eradicated from the population, but unfortunately, a cache of the virus remains preserved in research facilities, meaning that it might one day be weaponized. It’s not practical to vaccinate all people against the disease. Instead, the U.S. government’s strategy following a confirmed smallpox outbreak includes “ring containment and voluntary vaccination.” A “ring” of vaccinated/protected individuals is built around the bioterrorism infection case and their contacts to prevent further transmission.

New Technologies and Techniques to Identify Bioweapons

Monitoring public health, and reporting incidence of diseases of note, is the first step in any bioterrorism defense plan. The faster a potential incident is uncovered, the greater the chance for containment. Rapid tests are being investigated to detect genetic changes in hosts due to bioweapons even before symptoms develop. Early-warning systems, such as DNA chips or recombinant cells that fluoresce in the presence of a bioweapon, are also being developed.

Biological hazard symbol.

Examining mail for B. anthracis.

Pro Strips Rapid Screening System, developed by ADVNT Biotechnologies LLC, is the first advanced multi-agent biowarfare detection kit that tests for anthrax, ricin toxin, botulinum toxin, plague, and SEB (staphylococcal enterotoxin B).
Additional Instructor and Student Resources

Learning Catalytics is a “bring your own device” (laptop, smartphone, or tablet) student engagement, assessment, and classroom intelligence system. With **Learning Catalytics**, instructors can assess students in real time using open-ended tasks to probe student understanding. Mastering Microbiology users may select from Pearson’s library of questions designed especially for use with **Learning Catalytics**.

Instructor Resource Materials for Microbiology: An Introduction
The Instructor Resource Materials organize all instructor media resources by chapter into one convenient and easy-to-use package containing:
- All figures, photos, and tables from the textbook in both labeled and unlabeled formats
- TestGen Test Bank
- MicroFlix animations
- Instructor’s Guide

A wealth of additional classroom resources can be downloaded from the Instructor Resources area of Mastering Microbiology.

Laboratory Experiments in Microbiology, 12th Edition by Johnson/Case
0-134-60520-9 / 978-0-134-60520-3
Available for purchase.

Engaging, comprehensive and customizable, **Laboratory Experiments in Microbiology** is the perfect companion lab manual for **Microbiology: An Introduction**, 13th Edition.

Mastering Microbiology
Upon textbook purchase, students and teachers are granted access to Mastering Microbiology with Pearson eText. High school teachers can obtain preview or adoption access to Mastering Microbiology in one of the following ways:

Preview Access
- Teachers can request preview access online by visiting www.PearsonSchool.com/Access_Request. Select Science, choose Initial Access, and complete the form under Option 2. Preview Access information will be sent to the teacher via e-mail.

Adoption Access
- With the purchase of this program, a Pearson Adoption Access Card with Instructor Manual will be delivered with your textbook purchase. (ISBN: 978-0-13-354087-1)

OR
- Visit PearsonSchool.com/Access_Request, select Science, choose Initial Access, and complete the form under Option 3—MyLab/Mastering Class Adoption Access. Teacher and Student access information will be sent to the teacher via e-mail.

Students, ask your teacher for access

Pearson reserves the right to change and/or update technology platforms, including possible edition updates to customers during the term of access. This will allow Pearson to continue to deliver the most up-to-date content and technology to customers. Customer will be notified of any change prior to the beginning of the new school year.
About the Authors

Gerard J. Tortora Jerry Tortora is professor of biology and former biology coordinator at Bergen Community College in Paramus, New Jersey. He received his bachelor’s degree in biology from Fairleigh Dickinson University and his master’s degree in science education from Montclair State College. He has been a member of many professional organizations, including the American Society of Microbiology (ASM), the Human Anatomy and Physiology Society (HAPS), the American Association for the Advancement of Science (AAAS), the National Education Association (NEA), and the Metropolitan Association of College and University Biologists (MACUB).

Above all, Jerry is devoted to his students and their aspirations. In recognition of this commitment, MACUB presented Jerry with the organization’s 1992 President’s Memorial Award. In 1995, he was selected as one of the finest faculty scholars of Bergen Community College and was named Distinguished Faculty Scholar. In 1996, he received a National Institute for Staff and Organizational Development (NISOD) excellence award from the University of Texas and was selected to represent Bergen Community College in a campaign to increase awareness of the contributions of community colleges to higher education.

Jerry is the author of several best-selling science textbooks and laboratory manuals, a calling that often requires an additional 40 hours per week beyond his full-time teaching responsibilities. Nevertheless, he still makes time for four or five weekly aerobic workouts. He also enjoys attending opera performances at the Metropolitan Opera House, Broadway plays, and concerts. He spends his quiet time at his beach home on the New Jersey Shore.

To all my children, the most important gift I have: Lynne, Gerard Jr., Kenneth, Anthony, and Drew, whose love and support have been such an important part of my personal life and professional career.

Berdell R. Funke Bert Funke received his Ph.D., M.S., and B.S. in microbiology from Kansas State University. He has spent his professional years as a professor of microbiology at North Dakota State University. He taught introductory microbiology, including laboratory sections, general microbiology, food microbiology, soil microbiology, clinical parasitology, and pathogenic microbiology. As a research scientist in the Experiment Station at North Dakota State, he has published numerous papers in soil microbiology and food microbiology.

Christine L. Case Chris Case is a professor of microbiology at Skyline College in San Bruno, California, where she has taught for the past 46 years. She received her Ed.D. in curriculum and instruction from Nova Southeastern University and her M.A. in microbiology from San Francisco State University. She was Director for the Society for Industrial Microbiology and is an active member of the ASM. She received the ASM and California Hayward outstanding educator awards. Chris received the SACNAS Distinguished Community College Mentor Award for her commitment to her students, several of whom have presented at undergraduate research conferences and won awards. In addition to teaching, Chris contributes regularly to the professional literature, develops innovative educational methodologies, and maintains a personal and professional commitment to conservation and the importance of science in society. Chris is also an avid photographer, and many of her photographs appear in this book.

I owe my deepest gratitude to Don Biederman and our three children, Daniel, Jonathan, and Andrea, for their unconditional love and unwavering support.
Digital Authors

Warner B. Bair III Warner Bair is a professor of biology at Lone Star College–CyFair in Cypress, Texas. He has a bachelor of science in general biology and a Ph.D. in cancer biology, both from the University of Arizona. He has over 10 years of higher education teaching experience, teaching both general biology and microbiology classes. Warner is the recipient of multiple educational awards, including the National Institute for Staff and Organizational Development (NISOD) excellence award from the University of Texas and the League for Innovation in the Community College John and Suanne Roueche Excellence Award. Warner has previously authored Interactive Microbiology® videos and activities for the MasteringMicrobiology website and is a member of the American Society for Microbiology (ASM). He is also a certified Instructional Skill Workshop (ISW) facilitator, where he assists other professors in the development of engaging and active classroom instruction. When not working, Warner enjoys outdoor activities and travel. Warner would like to thank his wife, Meaghan, and daughter, Aisling, for their support and understanding of the many late nights and long weekends he spends pursuing his writing.

Derek Weber Derek Weber is a professor of biology and microbiology at Raritan Valley Community College in Somerville, New Jersey. He received his B.S. in chemistry from Moravian College and his Ph.D. in biomolecular chemistry from the University of Wisconsin–Madison. His current scholarly work focuses on the use of instructional technology in a flipped classroom to create a more active and engaging learning environment. Derek has received multiple awards for these efforts, including the Award for Innovative Excellence in Teaching, Learning and Technology at the International Teaching and Learning Conference. As part of his commitment to foster learning communities, Derek shares his work at state and national conferences and is a regular attendee at the annual American Society for Microbiology Conference for Undergraduate Educators (ASMCUE). He has previously authored MicroBooster Video Tutorials, available in MasteringMicrobiology, which remediate students on basic concepts in biology and chemistry as they apply to microbiology. Derek acknowledges the support of his patient wife, Lara, and his children, Andrew, James, and Lilly.
Preface

Since the publication of the first edition nearly 30 years ago, well over 1 million students have used Microbiology: An Introduction at colleges and universities around the world, making it the leading microbiology textbook for non-majors. The thirteenth edition continues to be a comprehensive beginning text, assuming no previous study of biology or chemistry. The text is appropriate for students in a wide variety of programs, including the allied health sciences, biological sciences, environmental science, animal science, forestry, agriculture, nutrition science, and the liberal arts.

The thirteenth edition has retained the features that have made this book so popular:

- **An appropriate balance between microbiological fundamentals and applications, and between medical applications and other applied areas of microbiology.** Basic microbiological principles are given greater emphasis, and health-related applications are featured.

- **Straightforward presentation of complex topics.** Each section of the text is written with the student in mind.

- **Clear, accurate, and pedagogically effective illustrations and photos.** Step-by-step diagrams that closely coordinate with narrative descriptions aid student comprehension of concepts.

- **Flexible organization.** We have organized the book in a clear learning framework for the related chapters. Each refers the student to a related MicroFlix video accessible through MasteringMicrobiology.

- **Big Picture core topic features.** These two-page spreads focus on the most challenging topics for students to master: metabolism (Chapter 5), genetics (Chapter 8), and immunology (Chapter 16). Each spread breaks down these important concepts into manageable steps and gives students a clear learning framework for the related chapters. Each refers the student to a related MicroFlix video accessible through MasteringMicrobiology.

- **Big Picture disease features.** These two-page spreads appear within each chapter in Part Four, Microorganisms and Human Disease (Chapters 21–26), as well as Chapters 18 (Practical Applications of Immunology) and 19 (Disorders of the Immune System). Each spread focuses on one significant public health aspect of microbiology.

- **ASM guidelines.** The American Society for Microbiology has released six underlying concepts and 27 related topics to provide a framework for key microbiological topics deemed to be of lasting importance beyond the classroom. The thirteenth edition explains the themes and competencies at the beginning of the book and incorporates callouts when chapter content matches one of these 27 topics. Doing so addresses two key challenges: it helps students and instructors focus on the enduring principles of the course, and it provides another pedagogical tool for instructors to assess students’ understanding and encourage critical thinking.

- **Cutting-edge media integration.** MasteringMicrobiology (www.masteringmicrobiology.com) provides unprecedented, cutting-edge assessment resources for instructors as well as self-study tools for students. Big Picture Coaching Activities are paired with the book’s Core Topics and Clinical Features. Interactive Microbiology is a dynamic suite of interactive tutorials and animations that teach key concepts in microbiology; and MicroBoosters are brief video tutorials that cover key concepts that some students may need to review or relearn.

New to the Thirteenth Edition

The thirteenth edition focuses on big-picture concepts and themes in microbiology, encouraging students to visualize and synthesize more difficult topics such as microbial metabolism, immunology, and microbial genetics.

The thirteenth edition meets all students at their respective levels of skill and understanding while addressing the biggest challenges that instructors face. Updates to the thirteenth edition enhance the book’s consistent pedagogy and clear explanations. Some of the highlights follow.

- **Exploring the Microbiome.** Each chapter has a new box featuring an aspect of microbiome study related to the chapter. Most feature the human microbiome. The boxes are designed to show the importance of microorganisms in health, their importance to life on Earth, and how research on the microbiome is being done.

- **In the Clinic videos accompanying each chapter opener.** In the Clinic scenarios that appear at the start of every chapter include critical-thinking questions that encourage students to think as health care professionals would in various clinical scenarios and spark student interest in the forthcoming chapter content. For the thirteenth edition, videos have been produced for the In the Clinic features for Chapters 1 through 20 and are accessible through MasteringMicrobiology.
• New Big Picture disease features. New Big Picture features include Vaccine-Preventable Diseases (Chapter 18), Vertical Transmission: Mother to Child (Chapter 22), and Bioterrorism (Chapter 24).
• Reworked immunology coverage in Chapters 17, 18, and 19. New art and more straightforward discussions make this challenging and critical material easier for students to understand and retain.

Chapter-by-Chapter Revisions

Data in text, tables, and figures have been updated. Other key changes to each chapter are summarized below.

Chapter 1
• The resurgence in microbiology is highlighted in sections on the Second and Third Golden Ages of Microbiology.
• The Emerging Infectious Diseases section has been updated.
• A discussion of normal microbiota and the human microbiome has been added.

Chapter 2
• A discussion of the relationship between starch and normal microbiota has been added.

Chapter 3
• Coverage of super-resolution light microscopy has been added.

Chapter 4
• The description of the Gram stain method of action has been revised.
• Archaella are now covered.

Chapter 5
• The potential for probiotic therapy using lactic acid bacteria is introduced.
• Reoxidation of NADH in fermentation is now shown in Figure 5.18.

Chapter 6
• Discussion has been added regarding the influence of carrying capacity on the stationary phase of microbial growth.
• Discussion of quorum sensing in biofilms is included.
• The plate-streaking figure is revised.

Chapter 7
• A new section on plant essential oils has been added.

Chapter 8
• The discussion of operons, induction, and repression has been revised.

Chapter 9
• Riboswitches are defined.
• A new box about tracking Zika virus is included.

Chapter 10
• Discussion of gene editing using CRISPR technology has been added.

Chapter 11
• The genus Prochlorococcus is now included.
• The phylum Tenericutes has been added.

Chapter 12
• The classification of algae and protozoa is updated.

Chapter 13
• Baltimore classification is included.
• Virusoids are defined.

Chapter 14
• Discussions of herd immunity and the control of healthcare-associated infections are expanded.
• Clinical trials are defined.
• Congenital transmission of infection is included.
• Discussion of the emerging HAI pathogen Elizabethkingia is now included.
• Epidemiological data have been updated.

Chapter 15
• Genotoxin information is updated.

Chapter 16
• The discussion of the role of normal microbiota in innate immunity is expanded.
• A table of chemical mediators of inflammation is included.

Chapter 17
• A new table listing cytokines and their functions has been added.
• Cells involved in cell-mediated immunity are summarized in a table.

Chapter 18
• Vaccine-preventable diseases are discussed in a new Big Picture.
• Coverage of recombinant vector vaccines has been added.

Chapter 19
• The discussion of autoimmune diseases has been updated.
• The discussion of HIV/AIDS has been updated.
• The Big Picture box has been revised to expand discussion of dysbiosis-linked disorders.
Chapter 20
- Tables have been reorganized.
- Coverage regarding the mechanisms of action of antimicrobial drugs has been updated.
- In the Clinical Focus box, data on antibiotics in animal feed have been updated.

Chapter 21
- All data are updated.
- The Big Picture on Neglected Tropical Diseases has been revised to include river blindness.

Chapter 22
- All data are updated.
- Coverage of Zika virus disease has been added.
- Discussion of Bell's palsy has been added.
- A new Big Picture covering vertical transmission of congenital infections has been added.

Chapter 23
- All data are updated.
- The new species of *Borrelia* are included.
- Maps showing local transmission of vector-borne diseases have been updated.

Chapter 24
- All data, laboratory tests, and drug treatments have been updated.
- The emerging pathogen *Enterovirus* D68 is included.
- A new Big Picture covering bioterrorism has been added.

Chapter 25
- All data, laboratory tests, and drug treatments are updated.
- *Salmonella* nomenclature has been revised to reflect CDC usage.
- Images of protozoan oocysts and helminth eggs have been added to illustrate laboratory identification.

Chapter 26
- All data, laboratory tests, and drug treatments have been updated.
- STIs that do not affect the genitourinary system are cross-referenced to the organ system affected.
- Discussion of ocular syphilis is now included.

Chapter 27
- The concept of the Earth microbiome is introduced.
- Discussion of hydrothermal vent communities has been added.
- The discussions of bioremediation of oil and wastewater have been updated.

Chapter 28
- The discussion of industrial fermentation has been updated.
- The definition of *biotechnology* is included.
- A discussion of the iChip has been added.
- A table listing fermented foods has been added.
- Discussion of microbial fuels cells is now included.
Acknowledgments

In preparing this textbook, we have benefited from the guidance and advice of a large number of microbiology instructors across the country. These reviewers have provided constructive criticism and valuable suggestions at various stages of the revision. We gratefully acknowledge our debt to these individuals. Special thanks to retired epidemiologist Joel A. Harrison, Ph.D., M.P.H. for his thorough review and editorial suggestions.

Contributor
Special thanks to Janette Gomos Klein, CUNY Hunter College, for her work on Chapters 17, 18, and 19.

Reviewers
Jason Adams, College of DuPage
D. Sue Katz Amburn, Rogers State University
Ana Maria Barral, National University
Anar Brahmbhatt, San Diego Mesa College
Carron Bryant, East Mississippi Community College
Luti Erbeznik, Oakland Community College
Tod R. Fairbanks, Palm Beach State College
Myriam Alhadeff Feldman, North Seattle College
Kathleen Finan, College of DuPage
Annissa Furr, Kaplan University
Pattie S. Green, Tacoma Community College
Julianne Grose, Brigham Young University
Amy Jo M. Hammett, Texas Woman’s College
Justin Hoshaw, Waubonsee Community College
Huey-Jane Liao, Northern Virginia Community College
Anne Montgomery, Pikes Peak Community College
Jessica Parilla, Georgia State University
Taylor Robertson, Snead State Community College
Michelle Scanavino, Mercer Area Community College
John P. Seabolt, University of Kentucky
Ginny Webb, University of South Carolina Upstate

We also thank the staff at Pearson Education for their dedication to excellence. Kelsey Churchman guided the early stages of this revision, and Jennifer McGill Walker brought it across the finish line. Erin Strathmann edited the new Exploring the Microbiome boxes, Chapters 17–19, and four new Big Picture spreads. Margot Otway edited the new In the Clinic videos. Serina Beauparlant and Barbara Yien kept the project moving during a period of staff transitioning.

Michele Mangelli, Mangelli Productions, LLC, managed the book from beginning to end. She expertly guided the team through the editorial phase, managed the new design, and then oversaw the production team and process. Karen Gulliver expertly guided the text through the production process and managed the day-to-day workflow. Sally Peyrefitte’s careful attention to continuity and detail in her copyedit of both text and art served to keep concepts and information clear throughout. The talented staff at Imagineering gracefully managed the high volume and complex updates of our art and photo program. Jean Lake coordinated the many complex stages of the art and photo processing and kept the entire art team organized and on-track. Our photo researcher, Kristin Piljay, made sure we had clear and striking images throughout the book. Gary Hespenheide created the elegant interior design and cover. The skilled team at iEnergizer Aptara®, Ltd moved this book through the composition process. Maureen Johnson prepared the index, Betsy Dietrich carefully proofread the art, while Martha Ghent proofread pages. Stacey Weinberger guided the book through the manufacturing process. A special thanks goes to Amy Siegesmund for her detailed review of the pages. Lucinda Bingham, Amanda Kaufmann, and Tod Regan managed this book’s robust media program. Courtney Towson managed the print ancillaries through the complex production stages.

Allison Rona, Kelly Galli, and the entire Pearson sales force did a stellar job presenting this book to instructors and students and ensuring its unwavering status as the best-selling microbiology textbook.

We would like to acknowledge our spouses and families, who have provided invaluable support throughout the writing process.

Finally, we have an enduring appreciation for our students, whose comments and suggestions provide insight and remind us of their needs. This text is for them.

Gerard J. Tortora Berdoll R. Funke Christine Case
Contents

PART ONE Fundamentals of Microbiology

1 The Microbial World and You 1

Microbes in Our Lives 2
 The Microbiome

Naming and Classifying Microorganisms 4
 Nomenclature • Types of Microorganisms • Classification of Microorganisms

A Brief History of Microbiology 6
 The First Observations • The Debate over Spontaneous Generation • The First Golden Age of Microbiology • The Second Golden Age of Microbiology • The Third Golden Age of Microbiology

Microbes and Human Welfare 14
 Recycling Vital Elements • Sewage Treatment: Using Microbes to Recycle Water • Bioremediation: Using Microbes to Clean Up Pollutants • Insect Pest Control by Microorganisms • Biotechnology and Recombinant DNA Technology

Microbes and Human Disease 16
 Biofilms • Infectious Diseases • Emerging Infectious Diseases

Study Outline • Study Questions 20

2 Chemical Principles 24

The Structure of Atoms 25
 Chemical Elements • Electronic Configurations

How Atoms Form Molecules: Chemical Bonds 27
 Ionic Bonds • Covalent Bonds • Hydrogen Bonds • Molecular Mass and Moles

Chemical Reactions 30
 Energy in Chemical Reactions • Synthesis Reactions • Decomposition Reactions • Exchange Reactions • The Reversibility of Chemical Reactions

IMPORTANT BIOLOGICAL MOLECULES 31

Inorganic Compounds 31
 Water • Acids, Bases, and Salts • Acid–Base Balance: The Concept of pH

Organic Compounds 33
 Structure and Chemistry • Carbohydrates • Lipids • Proteins • Nucleic Acids • Adenosine Triphosphate (ATP)

Study Outline • Study Questions 47

3 Observing Microorganisms Through a Microscope 51

Units of Measurement 52

Microscopy: The Instruments 52
 Light Microscopy • Two-Photon Microscopy • Super-Resolution Light Microscopy • Scanning Acoustic Microscopy • Electron Microscopy • Scanned-Probe Microscopy

Preparation of Specimens for Light Microscopy 61
 Preparing Smears for Staining • Simple Stains • Differential Stains • Special Stains

Study Outline • Study Questions 69

4 Functional Anatomy of Prokaryotic and Eukaryotic Cells 72

Comparing Prokaryotic and Eukaryotic Cells: An Overview 73

THE PROKARYOTIC CELL 73
 The Size, Shape, and Arrangement of Bacterial Cells 73
 Structures External to the Cell Wall 75
 Glycocalyx • Flagella and Archaella • Axial Filaments • Fimbriae and Pili
 The Cell Wall 80
 Composition and Characteristics • Cell Walls and the Gram Stain Mechanism • Atypical Cell Walls • Damage to the Cell Wall
 Structures Internal to the Cell Wall 85
 The Plasma (Cytoplasmic) Membrane • The Movement of Materials across Membranes • Cytoplasm • The Nucleoid • Ribosomes • Inclusions • Endospores

THE EUKARYOTIC CELL 94

Flagella and Cilia 96

The Cell Wall and Glycocalyx 96

The Plasma (Cytoplasmic) Membrane 97

Cytoplasm 98

Ribosomes 98

Organelles 98
 The Nucleus • Endoplasmic Reticulum • Golgi Complex • Lysosomes • Vacuoles • Mitochondria • Chloroplasts • Peroxisomes • Centrosome

The Evolution of Eukaryotes 102

Study Outline • Study Questions 103
5 Microbial Metabolism 107

Catabolic and Anabolic Reactions 110

Enzymes 111
 • Collision Theory
 • Enzymes and Chemical Reactions
 • Enzyme Specificity and Efficiency
 • Naming Enzymes
 • Enzyme Components
 • Factors Influencing Enzymatic Activity
 • Feedback Inhibition
 • Ribozymes

Energy Production 117
 • Oxidation-Reduction Reactions
 • The Generation of ATP
 • Metabolic Pathways of Energy Production

Carbohydrate Catabolism 119
 • Glycolysis
 • Additional Pathways to Glycolysis
 • Cellular Respiration
 • Fermentation

Lipid and Protein Catabolism 133

Biochemical Tests and Bacterial Identification 134

Photosynthesis 135
 • The Light-Dependent Reactions: Photophosphorylation
 • The Light-Independent Reactions: The Calvin-Benson Cycle

A Summary of Energy Production Mechanisms 138

Metabolic Diversity among Organisms 138
 • Photoautotrophs
 • Photoheterotrophs
 • Chemoautotrophs
 • Chemoherotrophs

Metabolic Pathways of Energy Use 140
 • Polysaccharide Biosynthesis
 • Lipid Biosynthesis
 • Amino Acid and Protein Biosynthesis
 • Purine and Pyrimidine Biosynthesis

The Integration of Metabolism 143

Study Outline • Study Questions 145

6 Microbial Growth 151

The Requirements for Growth 152
 • Physical Requirements
 • Chemical Requirements

Biofilms 157

Culture Media 159
 • Chemically Defined Media
 • Complex Media
 • Anaerobic Growth Media and Methods
 • Special Culture Techniques
 • Selective and Differential Media
 • Enrichment Culture

Obtaining Pure Cultures 163

Preserving Bacterial Cultures 164

The Growth of Bacterial Cultures 165
 • Bacterial Division
 • Generation Time
 • Logarithmic Representation of Bacterial Populations
 • Phases of Growth
 • Direct Measurement of Microbial Growth
 • Estimating Bacterial Numbers by Indirect Methods

Study Outline • Study Questions 174

7 The Control of Microbial Growth 178

The Terminology of Microbial Control 179

The Rate of Microbial Death 180

Actions of Microbial Control Agents 180
 • Alteration of Membrane Permeability
 • Damage to Proteins and Nucleic Acids

Physical Methods of Microbial Control 182
 • Heat
 • Filtration
 • Low Temperatures
 • High Pressure
 • Desiccation
 • Osmotic Pressure
 • Radiation

Chemical Methods of Microbial Control 187
 • Principles of Effective Disinfection
 • Evaluating a Disinfectant
 • Types of Disinfectants

Microbial Characteristics and Microbial Control 198

Study Outline • Study Questions 200

8 Microbial Genetics 204

Structure and Function of the Genetic Material 205
 • Genotype and Phenotype
 • DNA and Chromosomes
 • The Flow of Genetic Information
 • DNA Replication
 • RNA and Protein Synthesis

The Regulation of Bacterial Gene Expression 215
 • Pre-transcriptional Control
 • Post-transcriptional Control

Changes in Genetic Material 221
 • Mutation
 • Types of Mutations
 • Mutagens
 • The Frequency of Mutation
 • Identifying Mutants
 • Identifying Chemical Carcinogens

Genetic Transfer and Recombination 229
 • Plasmids and Transposons
 • Transformation in Bacteria
 • Conjugation in Bacteria
 • Transduction in Bacteria

Genes and Evolution 237

Study Outline • Study Questions 238

9 Biotechnology and DNA Technology 242

Introduction to Biotechnology 243
 • Recombinant DNA Technology
 • An Overview of Recombinant DNA Procedures

Tools of Biotechnology 245
 • Selection
 • Mutation
 • Restriction Enzymes
 • Vectors
 • Polymerase Chain Reaction

Techniques of Genetic Modification 248
 • Inserting Foreign DNA into Cells
 • Obtaining DNA
 • Selecting a Clone
 • Making a Gene Product
Applications of DNA Technology 254
 Therapeutic Applications • Genome Projects • Scientific Applications • Agricultural Applications
Safety Issues and the Ethics of Using DNA Technology 262
Study Outline • Study Questions 265

PART TWO A Survey of the Microbial World

10 Classification of Microorganisms 269

The Study of Phylogenetic Relationships 270
 The Three Domains • A Phylogenetic Tree
Classification of Organisms 274
 Scientific Nomenclature • The Taxonomic Hierarchy
 • Classification of Prokaryotes • Classification of Eukaryotes
 • Classification of Viruses
Methods of Classifying and Identifying Microorganisms 277
 Morphological Characteristics • Differential Staining
 • Biochemical Tests • Serology • Phage Typing • Fatty Acid Profiles • Flow Cytometry • DNA Sequencing • DNA Fingerprinting • Nucleic Acid Hybridization • Putting Classification Methods Together
Study Outline • Study Questions 291

11 The Prokaryotes: Domains Bacteria and Archaea 295

The Prokaryotic Groups 296
DOMAINT BACTERIA 296
Gram-Negative Bacteria 297
 Proteobacteria • The Nonproteobacteria Gram-Negative Bacteria
The Gram-Positive Bacteria 312
 Firmicutes (Low G + C Gram-Positive Bacteria) • Tenericutes • Actinobacteria (High G + C Gram-Positive Bacteria)
DOMAINT ARCHAEA 318
Diversity within the Archaea 318
MICROBIAL DIVERSITY 319
Discoveries Illustrating the Range of Diversity 319
Study Outline • Study Questions 321

12 The Eukaryotes: Fungi, Algae, Protozoa, and Helminths 323

Fungi 324
 Characteristics of Fungi • Medically Important Fungi • Fungal Diseases • Economic Effects of Fungi
Lichens 335
Algae 337
 Characteristics of Algae • Selected Phyla of Algae • Roles of Algae in Nature
Protozoa 341
 Characteristics of Protozoa • Medically Important Protozoa
Slime Molds 346
Helminths 347
 Characteristics of Helminths • Platyhelminths • Nematodes
Arthropods as Vectors 355
Study Outline • Study Questions 357

13 Viruses, Viroids, and Prions 361

General Characteristics of Viruses 362
 Host Range • Viral Size
Viral Structure 363
 Nucleic Acid • Capsid and Envelope • General Morphology
Taxonomy of Viruses 366
Isolation, Cultivation, and Identification of Viruses 370
 Growing Bacteriophages in the Laboratory • Growing Animal Viruses in the Laboratory • Viral Identification
Viral Multiplication 372
 Multiplication of Bacteriophages • Multiplication of Animal Viruses
Viruses and Cancer 384
 The Transformation of Normal Cells into Tumor Cells
 • DNA Oncogenic Viruses • RNA Oncogenic Viruses • Viruses to Treat Cancer
Latent Viral Infections 386
Persistent Viral Infections 386
Plant Viruses and Viroids 386
Prions 388
Study Outline • Study Questions 389

PART THREE Interaction between Microbe and Host

14 Principles of Disease and Epidemiology 393

Pathology, Infection, and Disease 394
Human Microbiome 394
 Relationships between the Normal Microbiota and the Host
 • Opportunistic Microorganisms • Cooperation among Microorganisms
15 Microbial Mechanisms of Pathogenicity 423

16 Innate Immunity: Nonspecific Defenses of the Host 445

17 Adaptive Immunity: Specific Defenses of the Host 475

18 Practical Applications of Immunology 499
Diagnostic Immunology 507
Use of Monoclonal Antibodies • Precipitation Reactions
• Agglutination Reactions • Neutralization Reactions
• Complement-Fixation Reactions • Fluorescent-Antibody Techniques • Enzyme-Linked Immunosorbent Assay (ELISA)
• Western Blotting (Immunoblotting) • The Future of Diagnostic and Therapeutic Immunology
Study Outline * Study Questions 520

19 Disorders Associated with the Immune System 524
Hypersensitivity 525
Allergies and the Microbiome • Type I (Anaphylactic) Reactions
• Type II (Cytotoxic) Reactions • Type III (Immune Complex) Reactions • Type IV (Delayed Cell-Mediated) Reactions
Autoimmune Diseases 536
Cytotoxic Autoimmune Reactions • Immune Complex Autoimmune Reactions • Cell-Mediated Autoimmune Reactions
Reactions to Transplantation 538
Immunosuppression to Prevent Transplant Rejection
The Immune System and Cancer 542
Immunotherapy for Cancer
Immunodeficiencies 543
Congenital Immunodeficiencies • Acquired Immunodeficiencies
Acquired Immunodeficiency Syndrome (AIDS) 544
The Origin of AIDS • HIV Infection • Diagnostic Methods
• HIV Transmission • AIDS Worldwide • Preventing and Treating AIDS
Study Outline * Study Questions 554

20 Antimicrobial Drugs 558
The History of Chemotherapy 559
Antibiotic Use and Discovery Today
Spectrum of Antimicrobial Activity 560
The Action of Antimicrobial Drugs 561
Inhibiting Cell Wall Synthesis • Inhibiting Protein Synthesis
• Injuring the Plasma Membrane • Inhibiting Nucleic Acid Synthesis • Inhibiting the Synthesis of Essential Metabolites
Common Antimicrobial Drugs 564
Antibacterial Antibiotics: Inhibitors of Cell Wall Synthesis
• Inhibitors of Protein Synthesis • Injury to Membranes
• Nucleic Acid Synthesis Inhibitors • Competitive Inhibition of Essential Metabolites • Antifungal Drugs • Antiviral Drugs
• Antiprotozoan and Antihelminthic Drugs
Tests to Guide Chemotherapy 577
• The Diffusion Methods • Broth Dilution Tests
Resistance to Antimicrobial Drugs 579
• Mechanisms of Resistance • Antibiotic Misuse • Cost and Prevention of Resistance
Antibiotic Safety 583
Effects of Combinations of Drugs 583
Future of Chemotherapeutic Agents 583
Study Outline * Study Questions 586

PART FOUR Microorganisms and Human Disease

21 Microbial Diseases of the Skin and Eyes 590
Structure and Function of the Skin 591
• Mucous Membranes
Normal Microbiota of the Skin 592
Microbial Diseases of the Skin 592
Bacterial Diseases of the Skin • Viral Diseases of the Skin
• Fungal Diseases of the Skin and Nails • Parasitic Infestation of the Skin
Microbial Diseases of the Eye 612
Inflammation of the Eye Membranes: Conjunctivitis • Bacterial Diseases of the Eye • Other Infectious Diseases of the Eye
Study Outline * Study Questions 616

22 Microbial Diseases of the Nervous System 619
Structure and Function of the Nervous System 620
Bacterial Diseases of the Nervous System 621
• Bacterial Meningitis • Tetanus • Botulism • Leprosy
Viral Diseases of the Nervous System 630
• Poliomyelitis • Rabies • Arboviral Encephalitis
Fungal Disease of the Nervous System 638
• Cryptococcus neoformans Meningitis (Cryptococcosis)
Protozoan Diseases of the Nervous System 639
• African Trypanosomiasis • Amoebic Meningoencephalitis
Nervous System Diseases Caused by Prions 642
• Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease
Diseases Caused by Unidentified Agents 645
Study Outline * Study Questions 647
23 Microbial Diseases of the Cardiovascular and Lymphatic Systems 650

Structure and Function of the Cardiovascular and Lymphatic Systems 651
Bacterial Diseases of the Cardiovascular and Lymphatic Systems 652
 Sepsis and Septic Shock • Bacterial Infections of the Heart
 • Rheumatic Fever • Tularemia • Brucellosis (Undulant Fever)
 • Anthrax • Gangrene • Systemic Diseases Caused by Bites and Scratches • Vector-Transmitted Diseases
Viral Diseases of the Cardiovascular and Lymphatic Systems 668
 Burkitt’s Lymphoma • Infectious Mononucleosis • Other Diseases and Epstein-Barr Virus • Cytomegalovirus Infections
 • Chikungunya • Classic Viral Hemorrhagic Fevers • Emerging Viral Hemorrhagic Fevers
Protozoan Diseases of the Cardiovascular and Lymphatic Systems 674
 Chagas Disease (American Trypanosomiasis) • Toxoplasmosis
 • Malaria • Leishmaniasis • Babesiosis
Helminthic Disease of the Cardiovascular and Lymphatic Systems 681
 Schistosomiasis
Disease of Unknown Etiology 683
 Kawasaki Syndrome
Study Outline • Study Questions 683

24 Microbial Diseases of the Respiratory System 688

Structure and Function of the Respiratory System 689
Normal Microbiota of the Respiratory System 690
MICROBIAL DISEASES OF THE UPPER RESPIRATORY SYSTEM 690
Bacterial Diseases of the Upper Respiratory System 691
 Streptococcal Pharyngitis (Strep Throat) • Scarlet Fever
 • Diphtheria • Otitis Media
Viral Disease of the Upper Respiratory System 693
 The Common Cold
MICROBIAL DISEASES OF THE LOWER RESPIRATORY SYSTEM 695
Bacterial Diseases of the Lower Respiratory System 695
 Pertussis (Whooping Cough) • Tuberculosis • Bacterial Pneumonias • Melioidosis
Viral Diseases of the Lower Respiratory System 707

25 Microbial Diseases of the Digestive System 721

Structure and Function of the Digestive System 722
Normal Microbiota of the Digestive System 722
Bacterial Diseases of the Mouth 724
 Dental Caries (Tooth Decay) • Periodontal Disease
Bacterial Diseases of the Lower Digestive System 727
 Staphylococcal Food Poisoning (Staphylococcal Enterotoxicosis)
 • Shigellosis (Bacillary Dysentery) • Salmonellosis (Salmonella Gastroenteritis)
 • Typhoid Fever • Cholera • Noncholera Vibrios • Escherichia coli Gastroenteritis
 • Campylobacter Gastroenteritis • Helicobacter Pylori Ulcer Disease • Yersinia Gastroenteritis
 • Clostridium perfringens Gastroenteritis • Clostridium difficile–Associated Diarrhea
 • Bacillus cereus Gastroenteritis
Viral Diseases of the Digestive System 739
 Mumps • Hepatitis • Viral Gastroenteritis
Fungal Diseases of the Digestive System 746
Protozoan Diseases of the Digestive System 747
 Giardiasis • Cryptosporidiosis • Cyclosporiasis • Amebic Dysentery (Amebiasis)
Helminthic Diseases of the Digestive System 750
 Tapeworms • Hydatid Disease • Nematodes
Study Outline • Study Questions 755

26 Microbial Diseases of the Urinary and Reproductive Systems 760

Structure and Function of the Urinary System 761
Structure and Function of the Reproductive Systems 761
Normal Microbiota of the Urinary and Reproductive Systems 762
DISEASES OF THE URINARY SYSTEM 763
Bacterial Diseases of the Urinary System 763
 Cystitis • Pyelonephritis • Leptospirosis
DISEASES OF THE REPRODUCTIVE SYSTEMS 766
Bacterial Diseases of the Reproductive Systems 766
Features

EXPLORING THE MICROBIOME

1. How Does Your Microbiome Grow? 3
2. Feed Our Intestinal Bacteria, Feed Ourselves: A Tale of Two Starches 37
3. Obtaining a More Accurate Picture of Our Microbiota 67
4. Eukaryotes Are Microbiota, Too 94
6. Circadian Rhythms and Microbiota Growth Cycles 168
7. Antimicrobial Soaps: Doing More Harm Than Good? 191
8. Horizontal Gene Transfer and the Unintended Consequences of Antibiotic Usage 230
9. Crime Scene Investigation and Your Microbiome 261
10. Techniques for Identifying Members of Your Microbiome 291
11. Microbiome in Space 320
12. The Mycobiome 335
13. The Human Virome 364
14. Connections between Birth, Microbiome, and Other Health Conditions 395
15. Skin Microbiota Interactions and the Making of MRSA 427
16. The Microbiome’s Shaping of Innate Immunity 452
17. The Relationship between Your Immune Cells and Skin Microbiota 491
18. Microbiome May Enhance Response to Oral Vaccines 505
19. The Link between Blood Type and Composition of the Intestinal Microbiome 532
20. Looking to the Microbiome for the Next Great Antibiotic 585
21. Normal Skin Microbiota and Our Immune System: Allies in “Skin Wars” 594
22. Microbes Impacting the CNS 644
23. Is Blood Sterile? 653
24. Discovering the Microbiome of the Lungs 691
25. Sorting Out Good Neighbors from Bad in the GI Tract 723
26. Resident Microbes of the Urinary System 763
27. Resident Microbes of Earth’s Most Extreme Environments 794
28. Using Bacteria to Stop the Spread of Zika Virus 823

BIG PICTURE CORE TOPICS

Metabolism 108
Genetics 206
Immunity 446

BIG PICTURE DISEASES

Vaccine-Preventable Diseases 518
The Hygiene Hypothesis 528
Neglected Tropical Diseases 614
Vertical Transmission: Mother to Child 634
Climate Change and Disease 672
Bioterrorism 696
Cholera After Natural Disasters 734
STI Home Test Kits 768

FOUNDATION FIGURES

Figure 1.4 Disproving Spontaneous Generation 8
Figure 2.16 The Structure of DNA 45
Figure 3.2 Microscopes and Magnification 54
Figure 4.6 The Structure of a Prokaryotic Cell 76
Figure 5.1 An Overview of Respiration and Fermentation 120
Figure 6.15 Understanding the Bacterial Growth Curve 167
Figure 7.1 Understanding the Microbial Death Curve 181
Figure 8.2 The Flow of Genetic Information 209
Figure 9.1 A Typical Genetic Modification Procedure 244
Figure 10.1 Three-Domain System 271
Figure 12.1 Exploring Pathogenic Eukaryotes 324
Figure 13.15 Replication of a DNA-Containing Animal Virus 379
Figure 14.3 Koch’s Postulates: Understanding Disease 399
Figure 15.4 Mechanisms of Exotoxins and Endotoxins 431
Figure 15.9 Microbial Mechanisms of Pathogenicity 440
Figure 16.8 The Phases of Phagocytosis 458
Figure 16.12 Outcomes of Complement Activation 466
Figure 17.19 The Dual Nature of the Adaptive Immune System 495
Figure 18.2 The Production of Monoclonal Antibodies 509
Figure 19.17 The Progression of HIV Infection 548
Figure 20.2 Major Action Modes of Antimicrobial Drugs 561
Figure 20.20 Bacterial Resistance to Antibiotics 580
LIFE CYCLE FIGURES

Figure 11.11 Myxococcales 306
Figure 11.15 Chlamydiaceae 310
Figure 12.7 The Life Cycle of *Rhizopus*, a Zygomycete 329
Figure 12.8 The Life Cycle of *Encephalitozoon*, a Microsporidian 330
Figure 12.9 The Life Cycle of *Talaromyces*, an Ascomycete 331
Figure 12.10 A Generalized Life Cycle of a Basidiomycete 332
Figure 12.13 Green Algae 339
Figure 12.16 Oomycotes 341
Figure 12.20 The Life Cycle of *Plasmodium vivax*, the Apicomplexan That Causes Malaria 345
Figure 12.22 The Generalized Life Cycle of a Cellular Slime Mold 348
Figure 12.23 The Life Cycle of a Plasmodial Slime Mold 349
Figure 12.26 The Life Cycle of the Lung Fluke, *Paragonimus* spp. 350
Figure 12.28 The Life Cycle of the Tapeworm, *Echinococcus* spp. 353
Figure 23.13 The Life Cycle of the Tick Vector of Lyme Disease 665
Figure 23.16 The Life Cycle of the Tick Vector (Dermacentor spp.) of Rocky Mountain Spotted Fever 667
Figure 23.23 The Life Cycle of *Toxoplasma gondii*, the Cause of Toxoplasmosis 676
Figure 23.27 Schistosomiasis 682
Figure 24.17 The Life Cycle of *Coccidioides immitis*, the Cause of Coccidioidomycosis 713
Figure 24.19 The Life Cycle of *Pneumocystis jirovecii*, the Cause of *Pneumocystis* Pneumonia 714
Figure 25.26 The Life Cycle of *Trichinella spiralis*, the Causative Agent of Trichinellosis 754

CLINICAL FOCUS

Human Tuberculosis—Dallas, Texas 141
Infection Following Cosmetic Surgery 197
Tracking Zika Virus 218
Norovirus—Who Is Responsible for the Outbreak? 264
Mass Deaths of Marine Mammals Spur Veterinary Microbiology 280
The Most Frequent Cause of Recreational Waterborne Diarrhea 351

DISEASES IN FOCUS

21.1 Macular Rashes 596
21.2 Vesicular and Pustular Rashes 598
21.3 Patchy Redness and Pimple-Like Conditions 599
21.4 Microbial Diseases of the Eye 611
22.1 Meningitis and Encephalitis 627
22.2 Types of Arboviral Encephalitis 641
22.3 Microbial Diseases with Neurological Symptoms or Paralysis 646
23.1 Human-Reservoir Infections 657
23.2 Infections from Animal Reservoirs Transmitted by Direct Contact 662
23.3 Infections Transmitted by Vectors 663
23.4 Viral Hemorrhagic Fevers 675
23.5 Infections Transmitted by Soil and Water 681
24.1 Microbial Diseases of the Upper Respiratory System 694
24.2 Common Bacterial Pneumonias 704
24.3 Microbial Diseases of the Lower Respiratory System 716
25.1 Bacterial Diseases of the Mouth 727
25.2 Bacterial Diseases of the Lower Digestive System 740
25.3 Characteristics of Viral Hepatitis 743
25.4 Viral Diseases of the Digestive System 747
25.5 Fungal, Protozoan, and Helminthic Diseases of the Lower Digestive System 748
26.1 Bacterial Diseases of the Urinary System 764
26.2 Characteristics of the Most Common Types of Vaginitis and Vaginosis 779
26.3 Microbial Diseases of the Reproductive Systems 781

FEATURES
ASM Recommended Curriculum Guidelines for Undergraduate Microbiology

The American Society for Microbiology (ASM) endorses a concept-based curriculum for introductory microbiology, emphasizing skills and concepts that remain important long after students exit the course. The ASM Curriculum Guidelines for Undergraduate Microbiology Education provide a framework for key microbiological topics and agree with scientific literacy reports from the American Association for the Advancement of Science and Howard Hughes Medical Institute. This textbook references part one of curriculum guidelines throughout chapters. When a discussion touches on one of the concepts, readers will see the ASM icon, along with a summary of the relevant statement.

ASM Guideline Concepts and Statements

Evolution
- Cells, organelles (e.g., mitochondria and chloroplasts), and all major metabolic pathways evolved from early prokaryotic cells.
- Mutations and horizontal gene transfer, with the immense variety of microenvironments, have selected for a huge diversity of microorganisms.
- Human impact on the environment influences the evolution of microorganisms (e.g., emerging diseases and the selection of antibiotic resistance).
- The traditional concept of species is not readily applicable to microbes due to asexual reproduction and the frequent occurrence of horizontal gene transfer.
- The evolutionary relatedness of organisms is best reflected in phylogenetic trees.

Cell Structure and Function
- The structure and function of microorganisms have been revealed by the use of microscopy (including brightfield, phase contrast, fluorescent, and electron).
- Bacteria have unique cell structures that can be targets for antibiotics, immunity, and phage infection.
- Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities.
- While microscopic eukaryotes (for example, fungi, protozoa, and algae) carry out some of the same processes as bacteria, many of the cellular properties are fundamentally different.
- The replication cycles of viruses (lytic and lysogenic) differ among viruses and are determined by their unique structures and genomes.

Metabolic Pathways
- Bacteria and Archaea exhibit extensive, and often unique, metabolic diversity (e.g., nitrogen fixation, methane production, anoxygenic photosynthesis).
- The interactions of microorganisms among themselves and with their environment are determined by their metabolic abilities (e.g., quorum sensing, oxygen consumption, nitrogen transformations).
- The survival and growth of any microorganism in a given environment depend on its metabolic characteristics.
- The growth of microorganisms can be controlled by physical, chemical, mechanical, or biological means.

Information Flow and Genetics
- Genetic variations can impact microbial functions (e.g., in biofilm formation, pathogenicity, and drug resistance).
- Although the central dogma is universal in all cells, the processes of replication, transcription, and translation differ in Bacteria, Archaea, and Eukaryotes.
- The regulation of gene expression is influenced by external and internal molecular cues and/or signals.
- The synthesis of viral genetic material and proteins is dependent on host cells.
- Cell genomes can be manipulated to alter cell function.

Microbial Systems
- Microorganisms are ubiquitous and live in diverse and dynamic ecosystems.
- Most bacteria in nature live in biofilm communities.
- Microorganisms and their environment interact with and modify each other.
- Microorganisms, cellular and viral, can interact with both human and nonhuman hosts in beneficial, neutral, or detrimental ways.

Impact of Microorganisms
- Microbes are essential for life as we know it and the processes that support life (e.g., in biogeochemical cycles and plant and/or animal microbiota).
- Microorganisms provide essential models that give us fundamental knowledge about life processes.
- Humans utilize and harness microorganisms and their products.
- Because the true diversity of microbial life is largely unknown, its effects and potential benefits have not been fully explored.